
,.1"

¢_q o,

Z E) O

0
.0

m
i-, o
1- i

_J _ k.J

I'C E

1]
i--c_" .i_JE

LJ_ _ C

T_

I'.- 7.r ..

U J _ _

EXPERT S YS TEM VERIFICA T! 0 N
AND

VALIDATION STUD Y

ES V& V Workshop

J

Scott French
David Hamilton

International Business Machines Corporation

March 1992

Cooperative Agreement NCC 9-16

Research Activity No. AI. 16

NASA Johnson Space Center

Information Systems Directorate
Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

INTERIM REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part ofthls endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bflitles. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under CooperaUve Agreement NCC 9-16,

computing and educational faciliUes are shared by the two insUtuUons to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL. the mission Is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

Uonal sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research an-I education programs, while other research

organlzaUons am involved via the *gateway" concepL

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with Its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/dSC and industry.

EXPERT S YS TEM VERIFICA TI 0 N
AND

VALIDATION STUD Y

ES V& V Workshop

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Scott French and David Hamilton of the

International Business Machines Corporation. Dr. T. F. I_ibfried served as

RICIS research representative.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16

between the NASA Johnson Space Center and the University of Houston-Clear

Lake. The NASA technical monitor for this activity was Christopher Culbert,

Chief, Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either

express or implied, of RICIS, NASA or the United States Government.

Expert Systems V&V Guidelines Workshop:

Part One: Verification and Validation of Software

By Scott W. French and David O. Hamilton

This section is part of the Expert Systems V&V Workshop. It summarizes

conventional approaches to verification and validation of software. The material

provided here will explore general approaches in applying verification and validation to
conventional procedural software implemenations. For more specific details on topics

and techniques please refer to the attached references.

Table of CQnt¢llts

Introduction ... 3

Overview ... 3

Goals ... 3

• The Verification Puzzle .. 5

Aspects .. 7

Characteristics of Software .. 8

Testing Phases .. 10

System Testing .. 11

Unit/Integration Testing ... 13

Static Testing .. 15

The Traffic Controller Problem .. 18

Testing Techniques 22

General Techniques .. 22

System Testing Techniques .. 23

Unit/Integration Testing Techniques ... 26

Static Testing Techniques .. 32

Summary .. 38

Key Points ... 38

Comments on Testing Techniques .. 38

Appendix A: References .. A-1

Appendix B: Techniques Vs. Phases ... B-1

Appendix C: Techniques Vs. Correctness ... C-1

Appendix D: Techniques Vs. References .. D-1

Appendix E: Example Life-Cycle Models ... E-1

2_5D2 2

Introduction

Overview

The primary purpose of this
document is to build a foundation for

applying principles of verification and

validation of Expert Systems. To

achieve this end, some background

discussion of verification and validation

(V&V) as applied to conventionally

implemented software is required. Part

One will discuss the background of

V&V from the perspective of (I) what is

V&V of software and (2) V&V's role in

developing software. Part One will also

overview some common analysis

techniques that are applied when

performing V&V of software. All of

this material will be presented based on

the assumption that the reader has little

or no background in V&V or in

developing procedural software.

As the discussion of Part One

unfolds, some additional aspects of

software development will be

mentioned, but not discussed in any

detail. These aspects will be highlighted

now.

V&V can be characterized as the

application of a collection of techniques

in a manner whose goal is to show that a

piece of software has been built

correctly and solves the right problem.

Expanding on the goal of V&V as just
outlined Part One will demonstrate that

based on some insights into how

software is developed, application of

V&V tehcniques is most effective when

applied in a logical sequence of tasks.

Based on this conclusion, therefore, one

can infer that a process can be applied to

software development. This process can

be referred to as a life cycle. There have

been many life cycle models proposed

and appendix E shows some examples

(these examples were adapted from the

cited references) of just a few. Part One

will not attempt to dictate which of these

models is the best to use (different

projects may need to use different

models). Rather, Part One will focus on

the specifics of each V&V task.

Application to the life cycle model your

project chooses should be simple based

on this discussion of V&V tasks.

Another aspect related to the
discussion of V&V found in Part One

relates to software design. Part One will

demonstrate that implementing V&V

tehcniques is much simpler when

software has been designed correctly (or

in other words, has been designed with

V&V in mind). Those aspects of

software design that are most impacted

by V&V will be discussed in Part One

However, this will not cover the more

general topic of how to design a

software system. Regardless of this

omission, it should be clear that V&V

and software design are very similar

activities and that each directly impacts
the other.

Goals

After reading Part One of this

document it should be clear that (1)

V&V should be done, (2) V&V works

best when performed as the system is

developed and (3) the system can be

developed in a way that makes V&V
easier.

First, Part One will show that V&V

should be done. Unfortunately, V&V

often succumbs to the myth of being an

activity that is excess baggage to the

2m5_2 3

softwaredevelopmentprocess. It is seen

as an activity whose impact on

developing timely, cost-effective

software is too great. In reality, nothing
could be farther from the truth. V&V

will be seen here as an activity that

actually reduces cost and improves

productivity by focusing on finding

errors earlier and satisfying customer

desires. This results in software systems

that are more reliable and user-friendly.

Next, Part One will show that V&V

works best when it is performed as the

system is built. V&V is NOT the final

step in a software development project,

nor is it the frost step or somewhere in

between. Rather, it is a collection of

activities performed throughout the

software development process. Part One

will demonstrate this be relating specific

V&V tasks to specific development
tasks.

Last, Part One will show that the

way a system is developed can make the

job of applying V&V much easier.

Special emphasis will be given to

selecting and performing those V&V

tasks that can be done early in the

process where errors are simpler and

cheaper to correct. Given that emphasis,

one will be able to conclude that V&V,

rather than adversely impacting cost and

productivity during software

development, actually lowers overall

cost and improces overall productivity

during software development.

2_5D2 4

The Verification Puzzle

What does it mean for software to be

correct? On the surface, this seems like

an easy question to .answer. However,

upon further examination of the nature

of software it quickly becomes obvious

that this is not easy to answer. There are

many aspects of software that make

showing correctness difficult.
Customers are often either unable to

adequately explain what functions the

system must perform or unable to decide
what functions are wanted. This leads to

an environment where software

development is in a constant state of
flax.

Unfortunately, even if this problem

were to be resolved so that exact

specifications were available and these

specifications did not change during

development, complete correctness

would not be possible to demonstrate.

During the early years of software

development, software was

demonstrated to be correct via dynamic

testing (i.e., executing the software on a

computer within its target environment).

At first, this seems reasonable, but it

reality it is not, because this only

demonstrates that errors exist. It does

not give the development team

confidence that no additional errors (i.e.,

those not uncovered by testing) are in

the software. Yet, this confidence was

needed. So to achieve that level of

confidence inordinate amounts of time

were spent at the end of the development

cycle doing testing.

It soon became apparent that this

approach was not sufficient. Software

systems were becoming too large and

complex to wait until the last step of the

process to try and demonstrate

correctness. Better techniques were

needed to help in finding errors earlier in

the process when they are easier to

correct.

As a result, much has been written

and studied over recent years on better

ways to demonstrate that software is
correct. The ideas of verification and

validation have grown from this work.

Verification and validation is a two

part approach to demonstrating

correctness. The first part focuses on

shwoing that the software is being built

correctly (i.e., verification). The second

part focuses on showing that what is

being built satisfies the customer (i.e.,

validation). The remainder of thise

section will focus on both of these

approaches and refer to them

collectively as verification.

2_5D2 5

Figure 1--Pieces of the
Verification Puzzle

The VerificationPuzzle

Safety

User

Interface

Utility

Resource Functional
Consumption

How should a developer begin in

verifying software? It turns out that the

approach to verifying software is a lot

like a puzzle composed of several pieces

(see 1 on 6). Each of the pieces of the

verification puzzle focus on a different

part of correctness. Showing that a

software system is correct, therefore,

must include approaches that solve each
part of this puzzle. The primary pieces

of the puzzle are:

2/25/92 6

• Functional Correctness

• Safety Correctnessl7,18

• User-Interface Correctness

• Resource Consumption
Correctness

• Utility Correctness

Functional Correctness: The first

piece to this puzzle, functional

correctness, is probably the most widely
known and practiced. It also includes

the largest number of techniques.
functional correctness is concerned with

documenting the expected behavior of a

piece of software (i.e., the software

should, given input X, generate output

Y) and then showing that the software's

implementation matches that specified
behavior.

Safety Correctness: The next piece

of the puzzle, safety correctness,
involves showing that there are not
conditions under which the software

reaches an unsafe state of operation
(e.g., a state where danger to man or
machine is imminent). One reason this

piece is so important is the inherent

:complexity involved with implementing

the other pieces of verification. When

software complexity grows, it may

actually be easier to show that the

software does not perform any unsafe

operations than it is to show, from a

functional correctness standpoint, that

the software will always do the right
thing.

User-Interface Correctness: The

next piece, user-interface correctness,
focuses on the human factors involved in

using a piece of software. This aspect of
vericiation (based on our earlier

definitions, this piece falls quite nicely

._int0_ the va!idation categorY.) was rarely

considered in the early days of verifying

software. The technology did not exist

to provide sophisticated interfaces.

Software was typically executed in a

batch fashion with minimal user

interface. However, over recent years,
the advances in both software and

hardware technology have created an
environment that is rich in software that

stretches the limits of user interface.

These interfaces must be correct and

user-friendly.

Resource Consumption

Correctne_: The next piece, resource

consumption correctness, focuses on

how well the software operates on a

computer within its target environment.

For example, can a real-time software

system meet its scheduling constraints

when it runs on a given processor.

Other factors such as disk usage,

transmission bandwidths, etc. must also

be considered when performing this type

of correctness testing.

Utility Correctness: The final

piece, utility correctness, focuses on the

overall software solution. This step is

primarily a validation step. Does the

software provide a solution that truly
satisfies the user's needs? It is not

unreasonable (nor unheard of) that a user

would reject a software system that

matches its specification. This is one

reason why developing software can be

so difficult and frustrating. It should

also be clear that testing for this kind of

correctness is not very scientific and for

that reason is very difficult to do. It is a

task that depends heavily on personal

skills more than technical skills (e.g.,

how well do the development and

customer teams work together to define

system requirements).

Aspects

What does a developer look for

when demonstrating that each of these

pieces of verification is satisfied? There

are three primary aspects to

demonstrating correctness:

consistency20, completeness20 and

termination19.

Consistency involves many things
both internal and external to the

software. Demonstrating consistency

involves looking at each aspect of the

software's definition with respect to all

other aspects of that definition to

determine if these aspects are consistent.

With respect to the external behavior

of the software, this may involve, for

example, showing that when a certain

kind of input is received (e.g., when an

operating system receives a hardware

interrupt) the system responds in a

consistent fashion (e.g., an interrupt

handler is invoked). Showing external

consistency also involves looking at the
user interface to determine whether its

look and feel is consisten (e.g.,

consistent use of colors, consistent use

of function keys, etc.).

Demonstrating internal consistency

involves showing that the pieces used to

build the software system (refer to

"Unit/Integration Testing" for a

complete description of these pieces) are

consistent. For example, one might

verify that a variable that is declared to

be integer is never assigned a non-

integer data value. One might also
check that this variable is used in a

consistent manner (e.g., the variable is

supposed to be used to index a specific

2_5D2 7

array and, therefore, it should only be

used to index that array).

Completeness (sometimes

completeness is referred to as closure) is

more difficult to demonstrate than

consistency. Consistency works with

parts of the system that have already

been defined. Completeness, however,

seeks to determine ff any parts of the

system are missing. Looking for

missing things is difficult because one is

not always sure what to look for.

Some key criteria for focusing this

search for the complete solution are:

• accepts all required inputs

• generates all required outputs

• performs all required actions

• maintains all required data

Even though demonstration of

completeness is more difficult that

demonstrating consistency, both of these

approaches are undecidable problems

(i.e., no algorithm exists for

demonstrating either concept).

Unfortunately, this means that

developers can not def'mitively say that

software is complete and consistent.
The best that can be done is to

demonstrate sufficient consistency or

completeness. Fortunately, this is

generally good enough to demonstrate

correctness.

The final aspect of software
correctness is termination. Mills states

that "a program will be correct with

respect to its specification, if and only if,

for every initial value permissable by the

specification, the program will produce a

final value that corresponds to that initial

value in the specification. "23

Consistency and completeness will show

that generated outputs are correct. Yet,

based on this definition, that is not

enough. The developer must show that

each input will, in fact, generate an

output. That must mean that the

program, in order to be correct, must

always terminate. One part of

demonstrating that a program terminates

involves looking for all looping control

structures and then showing that those

loops tcrminatelg,7. Demonstrating

termination may also focus on showing

that programs never terminate

abnormally.

In summary, software is shown to be

correct by using (1) consistency and

completeness analysis to demonstrate a

program generates all the right answers

for all inputs and (2) termination

analysis to show that the program

always generates an answer.

Characteristics

The discussion so far has proceeded

based on the assumption that all

software systems are the same. Of

course, this is not true. There is a large
difference in the kinds of software

developed today. There are large

systems that must address a wide variety

of interfaces (e.g., an operating system)

as opposed to smaller self-contained

systems that address a narrow problem

domain. Software systems can also

differ in criticality and complexity (i.e.,

bigger does not necessarily mean more

complex). Software systems also differ

in the ways they are represented (e.g.,

declarative versus procedural).

All of these differences indicate that

verification must be approached based

2_5D2 8

on these differences. For example,
softwarethat is not man-rated(e.g., the
spaceshuttle flight software) may not
need the samelevel of verification as,
say, a video game. In addition some of

the pieces of the verification puzzle may

also be eliminated. For example, a batch

payroll system is probably going to have

a minimal (if any) requirement for

demonstrating user-interface correctness.

In other cases, for example,

development of sophisticated data entry

software may focus more on user-

interface correctness than on safety
correctness or functional correctness

(i.e., the user may be willing to live with

less functionality if the user interface is

really good; the reverse is probably not

true).

In conclusion, the characterisitics of

a software system impact how it should

be verified. The trick is to identify the

right tasks and techniques to use so that
the maximum cost-benefit ratio is

achieved.

2/25/92 9

Testin Phases

The verificationpuzzle shown in

figure I dramatizes that proving

software correctness involves many

activities. As it turns out, the

verification puzzle provides an abstract

view of what is required to verify

software. The pieces of the verification

puyzzle can be neatly divided into some

smaller puzzles. These puzzles, if you

will, are:

• Dynamic Testing

• Static Testing

Dynamic testing involves executing

software on a computer within its target

environment. As will be discussed later,

dynamic testing can be partitioned into

two separate testing activities: System

and Unit/Integration. System testing is

the final activity applied to software. It

focuses on demonstrating that the system

meets all stated objectives by the

use/customer. Errors found during this

stage of development are more difficult

and expensive to fix than in any other

stage of software development (because

its the last step).

The other part of dynamic testing is

Unit�Integration testing. This approach

to testing involves dynamic execution of

small self-contained pieces of the
software's internal structure in a stand-

alone fashion. Techniques that apply to

this kind of testing are often very time

consuming. However, they are good at

finding errors. This activity, because it
works with the internal structure of the

software, should precede system testing

(which assumes the structure is

complete). For this reason, erros found

during this activity will be less difficult

and costly to f'tx than during system test.

The Static Testing puzzle involves

human analysis (e.g., desk checking,

CASE, etc.) of software specifications at

varying levels of abstraction.

Techniques that address this puzzle are

time consuming, but are by far the most

cost-effective because they typically

uncover the most errors and they

uncover these errors much earlier in the

software development process.

This section will focus on providing

more detailed descriptions of each

testing phase. Figure 2 maps each

testing phase in relation to the other

phases based on the cost of fLxing errors

found during that phase.

2/25/92 10

Figure 2---Testing Phases and
Costs

The emphasis of figure 2 and the

discussion that follows is that finding

errors early in the development process

is the most cost-effective approach to

developing software. With that in mind,

developers should focus on identifying

and using techniques that meet that goal.

The sections that follow will provide

an overview of each testing phase, a

description of a simple example system

and brief illustrations of applying the

testing techniques in each phase to that

example system. This overview will

focus on descripbing specific

characteristics of a given testing phase,

what inputs are required to adequately

perform that testing phase and what

implications there are based on both the

input and output from that phase. These

implications will support the notion that

V&V testing phases should be applied in

a logical sequence or order.

System Testing

System testing is a testing phase that

does what its name implies: test the

_Y_g/zt. At this stage of software

development, the system is considered

complete (i.e., no need to worry about

the internal structure of the system).

There are several key characteristics of

software and testing during this stage of

development.

First of all, since the system is

viewed as a single entity it is considered

to be like a black-box 24,25. Viewing a

system like a black-box means that the

user can not see inside the box. Related

to software this means that the tester can

not see the internal structure of the

software.

Demonstrating the _ is correct

does not require knowledge of the

internalsystem structure. The system

testeristakingthe view of the customer.

The customer isnot concerned with how

the software isconstructed,just thatthe

software generatesthe correctresponses

for given inputs. It is very important

thatthisblack-box view be used at this

level. Too much knowledge about the

internalscan lead to some false testing

assumptions24. In fact,it is probably

wise to use individuals that did not

participatein developing the software

implementation for system testing.

2/25/92 11

So what, then, does the system

tester do? The system tester seeks to

show that the system exhibits required
behavior. What does it mean for the

system to exhibit required behavior?

Typically this means that the tester

should specify I a complete list of stimuli

and responses (i.e., inputs and outputs)

and then test that the software generates

the correct response for each stimulus.

This is what it means for a system to be

correct.

These descripficYn_ would contain

information that maps to each specific

piece of the verification puzzle. For

example, each documented

stimulus/response pair should provide

some indication of, say, the expected

response time. It would be helpful if

some indications were given regarding

the criticality of the operation (i.e., this

• operation must always work or the

shuttle will launch its payload before the

payload bay doors have been opened).

Descriptions of expected interfaces for

entering the stimulus and displaying the

response should also be specified.

For most systems, documenting each

stimulus/response in this way is

impossible. The number of pairs is

infinite. This principle is true for almost

all software systems. This principle also

leads to a somewhat disconcerting

conclusion: exhaustive testing is not

possible. Since exhaustive testing is not

possible and we know that showing a

program is correct means we must show

that a correct response is generated for

each stimulus, it is impossible to show

that a program is completely correct.

This leaves the tester with a

dilemma. How do I know when enough

testing (since I can't do it all) has been

done to show the system is correct?

Fortunately, there is an approach to

doing this. This approach hinges on

recognizing that classes of stimuli 26

exist.

A class is a collection of items that

exhibit some common properties.

People take advantage of classes

everyday. For example, human

language uses words to denote classes.

Humans can express the same idea in

many ways using language (e.g., "yes",

"you bet", "sure", etc.). This same

notion applies to program stimuli. The

advantage of recognizing this is that the

tester need only test one item from the

class since all items of the class should

exhibit the same characteristics (i.e.,

responses). This significantly reduces
the number of scenarios to be considered

during system test.

Unfortunately, even the number of

classes can be impractical to thoroughly

test. The next section, "Unit/Integration

Testing", will examine some ways to
reduces or even eliminate some of this

impracticality.

Before proceeding to the discussion

of Unit/Integration Testing, there are

some interesting implications to be

drawn from the system testing phase.

First, classes can be viewed as units.

This is important because it gives the

first hint as to what the internal software

structure might be like (see figure 3).

2/25/92 12

Rgure 3---Viewing the System
as a Collection of Units

Each of these units also have

stimulus/response pairs. This means that

each unit can be testing independanfly

by applying the same system test

approaches for each unit. This means
that each unit will have classes of

stimulus/response pairs just like the

system as a whole. These classes can be
viewed as units within units. The fact

that there are units within units

beginning at the outermost view of the

system means that there must be some

refinement taking place. This process of

refinement is often referred to as

stepwise refinement and should always

be practiced so that the system can be

viewed from differing layers of
abstraction.

Another implication of the system

test approach is that operational

scenarios 2324 Can be identified.

Operational scenarios represent a

collection of stimulus/response pairs that

uniquely identify operations that are the

most likely to occur when the system

becomes operational. Selection of these

scenarios comes directly from the

stimulus/response classes that have been

identified. The purpose for identifying
these is that these kinds of scenarios

provide the basis for predict normal

system performance (e.g., Mean-Time-

To-Failure).

Unit�Integration Testing

Unit/Integration testing involves

testing the pieces (i.e., units) of a

system. For this reason, testing

performed during this phase is often

referred to as white-box or clear-

box 2425 testing.

There are some striking similarities

between system testing and

:unit/integration testing. Unit/integration

testing, like system testing, is

• dynamic (i.e., involves executing

the software on a computer)

• focuses on identifying

stimulus/response classes

involves integration testing

(testing how well the pieces, or

units, work together)

Despite these similarities, there are

some significant differences between

2/25/92 13

systemandunit/integrationtesting. One

difference is that integration testing at

the system level only deals with one

level of absa'action, the system level.

Integration testing at the unit level may

address many levels of integration

depending upon the degree of stepwise

refinement applied.

Another difference is that the

developer must be concerned with

showing the unit itself is correct. This

gives an additional activity beyond

testing a level of integration.

To address both of these differences

the following key inputs are needed:

• the unit

• stimulus/response classes for
each unit

subsystems (i.e., different levels

of integration) and their required
behavior

ImaUraliam

The inputs and characteristics of this

testing phase point to a very positive

implication for system development.

Software can be designed so that

development, correction and

modification is greatly simplified. How

can this be? By recognizing that the

software must be composed of smaller

parts, the design technique, Modularity,

can be applied.

Modularity has many meanings

depending on who is spoken to. From a

management perspective, modularity can

be considered a unit of work 30. From a

programmer's perspective modularity

can "refer to a set of one or more

contiguous program statements having a

name by which other pans of the system

can invoke it and preferably having its

own set of variable names. ,,26

Regardless of which perspective is

chosen, modularity has a positive impact

on performing verification and

validation and should be applied to the

maximum extent possible. To enhance

the understanding of unit/integration

testing, some of these positive aspects of

modularity will be highlighted now.

Modularity and Its Benefits 19,23.

25,26.29,30

One benefit of modularity is that it

can provide an effective basis for

managing the development of software.

Why? Because modularity allows a

developer to develop small pieces of the

system in a manner that keeps the

separate from other pieces of the system.

The word separate here implies the

modules are separately compiled and

have their own data space. Therefore,

work assignments can easily be

distributed among programmers based
on modules.

Another benefit of modularity is that

it can allow the system to be

incrementally developed. Incremental

development seeks to build larger and

largers sytems by piecing together

smaller systems. In other words,

incrementally developed systems follow

a build as you go approach, The cost

savings associated with this approach

should be clear. If only a small portion

of the system is build and tested then

any problems found therein require only

a small portion of the system to change.

Waiting until the later steps when the

system is more completely defined then

2/25/92 14

there is much more that may possibly

change when an error is found.

Additional savings are reaped during

verification because, with modularity,
verification can be done at the level of

refinement. For example, if module A

calls modules B, C and D to perform its

function and that function changes only
module A needs to be re-verified. Since,

B, C and D did not change their

verification status remains unchanged.

Applying this principle to the scope of

the system development and it can be

seen that as the system tecomes more
and more defined the verification burden

becomes smaller.

Another benefit of modularity that is

related directly to the benefit just

described is that modularity reduces the

amount of re-verification. Since, by

definition, a module isolates portions of

the system so that changes to that

portion do not affect other parts of the

system. This can be done, in part, by

defining a stable interface (i.e., a
module's view of another module or as

Parnas states, "... the assumptions those

who write one module may make about

the other modules"-_°). Changing a

module without changing its interface

means that all other modules that depend
on that module do not need to change

their assumptions about (or calls to) that

module. This significantly reduces the

modules that must change as a result of a

single module changing.

Other lmolications

Some more general implications can
be drawn during this level of testing.
First of all, unit/integration testing

implies that there is a bridge that takes a

much less specific description of the

problem found in requirements to a very
specific description found in, say, the

target executable language. This bridge

is the design and is necessary to provide

an understanding of how the

requirements, usually stated in English,

were interpreted into the target

executable language.

In fact, since the definition of units

in the design has been drawn directly

from the initial step of generating

stimulus/response pairs (which are,

themselves, part of the system

requirements), mapping the

requirements via the design to the

implementation becomes a

straightforward task of tracing through

the levels of system refinement.

Unfortunately, system and

unit/integration testing do not provide
the exhaustive testing needed to
demonstrate correctness. The next

section, "Static Testing", will address

other important testing issues not

covered by either system or

unit/integration testing.

Static Testing

Dynamic testing techniques focus on
executing the software on a computer
and then analyzing the results of that
execution. Since exhaustive dynamic

testing is not possible other techniques
must be found to provide additional
assurance that the software is correct.

As it turns out, there are some kinds of

analysis that humans do better than

computers. These kinds of analysis do

well in filling the gaps found in dynamic

testing.

To begin to understand the value of

these techniques let's look at how static
testing differs from dynamic testing.

2/25/92 15

Onedifferenceis that each works from a

different specification. Dynamic testing
works from selection of

stimulus/response pairs from
stimulus/response classes. Static testing

uses a variety of specifications to
determine correcmess (correcmess

means that the implementation correctly
implements the specification). Some

kinds of specifications prescribe specific

properties of the system in a precise

mathematical form (e.g., axioms) lo.

Others use a more informal, English-like

style. Some specifications focus on

prescribing conditions that must be true
before execution of a given control
structure (e.g., if-then-else, while-loop,

etc.) and conditions that must be true

when the control structure completes

execution (pre/post conditions7¢S20).

Another difference is that static

testing approaches the sytem from
additional abstraction perspectives.

Dynamic testing focuses on differing

sizes of software (i.e., one level of

refinement is bigger, or contains more

units, than the next higher level of

refinement). Static testing includes this

view and the abstraction afforded by the

software's representation. This

representation may take the form of a

requirements document, design,

implementation, etc..

Abstraction and Refinement

Clearly, then, abstraction is one key

analysis technique that differentiates

static from dynamic testing.

Fortunately, humans are pretty good at

analyzing abstractions (unlike

computers). To better understand why,

let's examine some details regarding

abstraction and its companion,
refinement.

Abstraction is the process of

simplifying a description of something
by suppressing lower level details of the

description. For example, the word

chair is an abstraction. Using the word
chair in a conversation allows the

speaker to focus on the higher-level
semantics of chairs rather than the

specific details about chairs (four legs,

seat, back, etc.) that everyone knows

about. Using the abstraction is easier

and still conveys the meaning.
Abstraction also allows one to draw

inferences based on the abstraction.

Using the chair as an example again, if

someone were to say that X is a chair
and that Y is a chair, then one can infer

similar meanings for X and Y.

An important corollary to abstraction
is refinement. Refinement is a way to

break apart an abstraction into its details.

The process of applying refinement is

often referred to as stepwise refinement.

The opposite approach (building higher

level descriptions from collections of

lower level details) is called stepwise
abstraction. Stepwise refinement is a

good approach to designing a system

because it closely models how a human

analyzes a problem.

What does all this mean for

demonstrating correctness? Look back

at the discussion so far. Initially, one

starts at the system view and attempts to
show that is correct. However, before

doing that one must show that the
internal structure of the software is

correct. This is stepwise refinement.

Now, coupe that fact with the fact
that humans are good at analyzing
abstraction and that humans can view

2/25/92 16

many more representations of the system

than can the computer and there is a

sound reason for applying static testing.

This reasoning also has a financial

aspect as well. Since humans can

analyze software in any form then

analysts can begin analyzing the system

at its earliest point of definition well

before the system is so rigid that it is

difficult to change. These parts of the

development are also the points where

the system is least understood. For this

reason, it is reasonable to expect static

testing to find more errors than another

phase of testing.

Why Do Dynamic Testing?

Now, one might ask why dynamic

testing is needed at all. The primary

reason for doing dynamic testing is to

exercise code within its target

environment. Without attempting to_

execute the software on a computer,

testing would be relegated to humans

exercising the software in their heads.

This is definitely not sufficient to
demonstrate correctness.

This is true because for various

reasons. Humans can not execute large

sequences of operations very quickly.

Therefore, things such as response time

can be projected, but not accurately

measured. Humans can not handle large

volumes of data (especially when

coupled with trying to run this data

through a sequence of steps). Humans

can not emulate all the complexities of

the target environment where other

processes may affect how well the

software performs. All of these factors

contribute to the need for dynamic

testing.

What does all of this mean? There

must be a balance between static and

dynamic testing based on the following

principles:

apply static testing during

development as much as possible

as early as possible (this should

help avoid spending inordinate

amounts of time in dynamic

testing)

use static testing primarily to

prove the system satisfies all

acceptance critieria

2/25/92 17

The Traffic Controller

problem

Now that each of the testing phases

has been described, it is time to look at

some techniques that can be used during

these phases. To understand these

techniques better, let's examine them

within the context of the following

simple problem.

A simple traffic light controller at a

four way intersection has car arrival

sensors and pedestrian crossing buttons.

In the absence of car arrival and

pedestrian crossing-signals, the traffic

light controller switches the direction of

traffic flow every two minutes. With a

car or pedestrian signal to change the

direction of traffic flow, the reaction

depends on the status of the auto and

pedestrian signals in the direction of

traffic flow; if auto pedestrian sensors

detect no approaching traffic in the

current direction of traffic flow, the

traffic flow will be switched in fifteen

seconds, if such approaching traffic is

detected, the switch in traffic flow will

be delayed fifreeen seconds with each

new detection of continuing traffic up to

a maximum of one minute.

Before discussing specific

application of each test phase to this

problem, begin by examining how

testable this problem description is. Can

this description be tested against to show

that the implementation is correct?

To start answering this question one

can analyze the system in terms of

stimulus/response pairs. Remember
from earlier discussions that the number

of possible stimulus/response pairs is

infinite (think about this problem and

prove to yourself that this is true).

Therefore, stimulus/response classes
must be identified so that a workable

number of scenarios can be addressed.

To help in the discussion of

stimulus/response pairs for the traffic

controller problem sequence expressions

will be used. A sequence expression is

an expression that describes a sequence

of events (reading left to right). Each

event is described as an ordered pair of

stimulus and clock time. For example,

the ordered pair, (app-signal, to), would

indicate that the approaching traffic was

detected at time, t0. Figure 4 shows

some example scenarios for the traffic

controller problem.

2/25/92 18

Figure 4--Sample Traffic
Controller Scenarios

{ (switch-ligh, to),

(, t I = to+120 seconds),

(switch-light, to) }

{ (switch-light, to),

(app-signal, tl=to+l second),

(, t2 = tl+120 seconds)

(switch-light, to) }

{ (switch-light, t0)

(appsignal, tl=to+2 seconds),

(, t2 = t1+120 seconds),

(switch-light, to) }

{ switch-light, to),

(app-signal, tl=to+n seconds),

(, t2 = tl+120 seconds)

(switch-light, to) }

{ (switch-light, to),

(ped-waiting, tl=to+ 1 second),

(, t2 = t1+15 seconds).

(switch-light, to) }

{ (switch-light, to),

(car.waiting, tl=to+l second),

(, t2 = tl+l$ seconds),

(switch-light, to) }

The external stimuli found in the

sequence expressions of figure 4 are

defined as follows:

• app-signal: approaching traffic is

detected

• ped-waiting: a pedestrian is

waiting for the light to change

• car-wain'ng: a car is waiting for

the light to change

• switch-light: the traffic light

changed direction

Those ordered pairs that specify no

external event represent an internal

stimulus (e.g., a period of time expired).

Now let's examine the scenarios in hopes

of identifying stimulus/response classes.

The first scenario listed in the

figured describes an sequence of events
where no external stimulus occurred

within two minutes, so the light

changed. The next few scenarios

describe a situation where approaching

traffic is detected followed by a two

minute period where no stimulus is

received. The light then changes. The

last scenarios describe situations where

traffic is waiting and a period of fifteen

seconds expires with no approaching

traffic being detected. The light then

changes.

Where are the stimulus/response

classes for these pairs? To answer this

question examine the scenarios where

approaching traffic is detected. The

possible number of pairs is infinite (the

interval, [0, 120], though bounded is

infinite). Therefore, all combinations

can not be tested. Yet, in reality, do all
combinations need to be tried to

demonstrate correctness? No.

Regardless of whether the approaching
traffic is detected one second from the

last light change or 100 seconds is
immaterial. The traffic controller should

2/25/92 19

exhibit the same behavior for each.
Therefore a more general sequence

expression defining the

stimulus/response class can be written:

{ (switch-light, to),

(app-signai, tl<tO+120 seconds),

(, t2=tl+120 seconds),

(switch-light, to) }

Selecting a few cases from this class
is sufficient to test the entire class of

possible stimulus/response pairs. Other

classes are easily evidenced from the

description of figure 4. It is an exercise

for the reader to determine these

additional classes. Use figure 5 as your

guide.

Figure 5--Initial Black-Box
View of the Traffic Controller

The process followed in identifying

these stimulus/response pairs may have
seemed a little ad-hoc. It would be nice

to use a more systematic approach. One

good approach for identifying

stimulus/response pairs to focus on the

existance of state.

State refers to the notion of

persistent data. Or, put another way,

data that persists (has a value) over time.

How does one identify state? A deeper

analysis of the meaning of states

provides some clues.

If state is data that will persist over

time then one should be able to query

the state (e.g., what is the value at time

2/25/92 20

tO). If statepersistsover time then there

must be a method for changing or

tmnsitioning from one state to another.

Likewise, there must be some way to

create state (assign a value). Therefore,

identifying state can be as simple as

looking for classes of data whether these

three categories of methods apply.

In the traffic controller problem state

is easy to find based on this criteria.

Each stimulus/response pair alludes to a

changing light. Therefore, the light

must have state since its value is queried
and transitions from one state to another.

Another example of state is the clock

or timer. Each stimulus/response pair

ask how much time has elapsed since the

last change of the traffic light?" This

implies a query on some kind of timer or

clock to access a value. In addition,

each pulse of the clock changes the state

•of the clock. Given these examples of

state, are there others?

Now that examples of state have
been identified one can see how this

helps isolate stimulus/response classes.

For example, classes can be formed
based on how the stimuli affect the state

of the traffic light. Figure 6 shows

partial results for this approach.

Figure 6----Isolating Classes
Based on State

i

• Car arrives from

the west

• No North-South

traffic for i5

seconds following

last signal change

1

ii

• Pedestrian arrives

from the west

• No North-South

traffic for 15

seconds following

last signal change

!
i

. Switch West-East Light to Green

1These should typically be specified as a

part of system requirements.

2/25/92 21

Testing, Technioues

This section will focus on some

common techniques for performing

verification testing during the test phases

described earlier. Each technique will

be discussed in light of the specific

phase where it applies and where it fits

in the verification puzzle (see figure 1

on page Error! Bookmark not

defined.).

General Techniques

Re_ression Testiw,/d-_

The discussions with respect to

testing have, so far, focused primarily on

development of new software.

However, statistics have shown that the

development aspect of a software system

• is only a small portion of its life-span.

Typically, as software is used over time

the need for changing the software

increases. New capabilitiies are

requested, errors are found, processes

become obselete. All of these point to

changing the software.

What effect does changing the

software have on testing? One of the

trickiest tasks in testing is to test

software that has changed. In part,

because the unchanged parts of the

software must be shown to still work the

same. Performing this kind of testing is

referred to Regression testing.

For example, assume that the traffic

controller should be changed so that a

pedestrian or car may have to wait up to

one and half minutes for the light to

change. Clearly, this change does not

effect how the traffic controller responds

when no traffic is waiting for the light to

change. Regression testing, then, would

work to show that this change in the

traffic controller system would not

change its response when no traffic is

waiting for the light to change.

Regression testing works best when

a test management tool is used to assist

in capturing and retrieving test cases
used to evaluate earlier versions of the

software.

emmlxl iat

Another general technique for testing

software is called prototyping.

Prototyping is an approach that assists

developers in gaining additional

understanding of the problem to be

solved. Prototyping focuses on building

scale models of the real system. These

scale models can then be evaluated by

both the developer and user to test their

understanding of how the system should

work. This kind of approach works best

when applied iteratively. What this

means is that small prototypes are built

early based on limited knowledge of the

domain and then incrementally

expanded as this knowledge increases.

Application of this approach to the

traffic controller problem, for example,

would probably indicate that

immediately switching a red light to

green is not good. The traffic needs

some warning that the light is going to

change so they can slow down. This

observation is not in the original

statement of the problem so based on the

prototype the problem statement should

be enhanced.

Comnetin_ Designs/&

2/25/92 22

Another general technique
capitalizes on the fact that different

developers often have very different

views of the system they are developing.

To take advantage of this, the competing

designs approach encourages different

teams of developers to build their own

views of the system. Once built, these

views are then compared. This

comparison may result in selection of

one team's approach to building the

system or may result in a merger of the

differing system views into one coherent

view. Regardless of the end result, the

selection process should, at a minimum,

force all developers to understand their
different views to make sure the selected

solution provides a complete system
solution.

Indenendent V&V

Another organizational technique for

doing V&V is called to define an

independent organization that is

responsible for performing V&V of the

product. The term independent, as used

here, refers to an organization outside

the development organization. This

independence removes any bias in

analyzing the product that may be

introduced from actaully helping build

the product. This approach is typically

performed at the requirements and

system test level, but can be applied to

any phase of the product development.

System Testing Techniques

]Functional Correctness

Showing functional correctness

during system testing involves

demonstrating that the _ generates

correct responses for each input. For

example, when the traffic controller does

not detect any approaching or waiting
traffic for two minutes after the most

recent light change, then the correct

response is for the traffic controller to

change the light.

Unfortunately, as stated earlier,

testing all possible combinations is not

possible. Therefore, some approaches

need to be used to help select from the

sets of possible test cases those cases

that provide the most benefit in

identifying errors in the software. One

of these techniques is called Realistic

testing 32.

This technique focuses on selecting
test cases based on their realism. Or, in

other words, based whether the test case

uses a scenario that would realistically

be used during operation of the software.

Additional effort should be expended in

identifying and applying these kinds of

cases because they are similar to how the

software will actually be operationally

used. For example, in the traffic

controller system, one could reasonably

expect that the majority of requests for a

light change will be from cars and not

pedestrians. Therefore, the majority of

test cases that involve auto requests for

light changes should be selected.

Another approach to selecting good

test cases is called Cause-Effect

graphing 26. Cause-effect graphing

examines the set of all possible stimuli

and the set of all possible responses and

attempts to identify paths from each of

these stimuli to specific responses. This

results in a Boolean logic network

constructed from basic logic structures

as shown in figure 7. The bottom of the

figure shows a simple graph where the

2/25/92 23

nodeson the far left are all the stimuli

and the nodes on the far right are all the

responses. Test cases are then selected

based on these paths through the
network.

Figure 7---Basics of Cause-

Effect Graphing

a pedestrian can request that the light

change. This can be viewed as an

abstraction by using the OR structure as

shown in figure 8 where the abstraction

is the idea of traffic is waiting. As far as

the controller itself is concerned,

whether or not the waiting signal is

received from a pedestrian or a car is
immaterial. All that matters is that some

kind of traffic requested that the light

change. This abstraction then can help

identify some stimulus/response classes
as discussed earlier.

fi>----<D

A cause-effect graph also highlights
levels of refinement and abstraction that

will be useful at the unit/integration

testing stage. This is because the

graphing technique focuses on building

many intermediate nodes when building

paths from stimuli to responses. These

intermediate nodes are the abstractions

used in the system. For example, in the

traffic controller problem either a car or

Figure 8----Cause Effect

Graphing and Abstraction

Cause-effect graphing is not a

perfect technique, because it provides

little guidance on which paths through

2/25/92 24

the network might provide the most

interesting results. One technique that

addresses this is Boundary testing 26.

Boundary testing focuses on identifying

test cases that exercise the boundary

values between stimulus/response

classes. Consider the following

stimulus/response class:

{ (switch-light, tO),

(app-signal, tl<t0+120 seconds),

(, t2=t1+120 seconds),

(switch-light, tO) . }.

Boundary testing would focus on

selecting specific test cases where

approaching traffic would be detected at

times fight near to and fight near t0+120

seconds.

A similar technique to the attribute
selection method is called Error

guessing 26. This technique involves

analyzing the system to identify

functions that one might expect to have

errors. This expectation can be based on

many factors, both subjective and

objective. Test cases are generated to

address these expectations.

Sometimes, interesting results can be

achieved by using no particular selection

scheme at all. This approach is called

Random testing 32 and does what its

name implies. Random selection of

cases from the many stimulus/response

pairs and/or classes.

Safety Correctness

Another approach to selecting good

test cases is called Attribute-based Test

Case Selection 32. This technique uses

attributes such as size, complexity,

criticality, reliability, etc. to select test

cases. For example, the traffic

controller system could be considered

critical since a failure in the system

might cause an accident (e.g., it makes

the light green in all directions).

Criticality, then, is a more significant

attribute than, say, size. Therefore,

selection of test cases for the traffic

controller will focus on picking those

test cases that might cause the traffic

controller itself to fail.

Other attributes of the system can be

used to select test cases that may not

directly relate to its functionality. For

example, test cases could be selected

based on some statistics regarding the

intended use of the system or some other

statistical record keeping technique.

Techniques to demonstrate safety

concerns focus on picking cases that

when executed cause the software to

reach an unsafe state. One technique
that works rather well is Stress

Testing 126,322. Slress testing is

primarily concerned with looking at off-

nominal cases that might cause the

system to reach an unsafe state (e.g., the

traffic light is green in all directions).

For example, what would happen if a

pedestrian repeatedly hits the change

light button? What happens if a power

surge occurs at the same time the user

pushes the button? Does the pedestrian

get fried or does the light become green
in all directions? These are the kinds of

issues involved in stress testing.

User Interface Correctness

From the system testing perspective

testing the user interface is most directly

addressed by a technique called Active

2/25/92 25

Interface testing 32. This technique

focuses on showing that all interfaces

with external entities work correctly.

For example, in the traffic controller

problem, external entities would include

cars and people. Active interface testing

is concerned, then, with showing that

the interface for both cars and people

work correctly. For example, can the

system detect lighter weight cars? Will

the system recognize the change light

request if the button sticks when the

pedestrian pushes that button?

Questions such as these are asked and

resolved as part of Active interface

testing.

Resource Consumntion Correctness

Resource consumption correctness is

going to focus on showing that the

system performs within a required level

of efficiency within its operating

environment. The most pertinent

technique for demonstrating this type of

correctness during system testing is

Performance testing 26d2. Performance

testing focuses on choosing test that

push the envelope of the system.

Performance testing is somewhat similar

to stress testing in that the tests selected

should stress the system. However,

performance testing will focus more on

using nominal cases. An example of

performance testing on the traffic

controller system would be selecting a

test case that will determine if delays in

receiving a request to change the

direction of traffic flow will adversely

affect delays in changing the light. For

example, what would happen at time

t+14.9999 seconds when a pedestrian

waiting signal was received at time t?

Unit�Integration Testing

Techniques

Functional Correctnes_

Demonstrating functional correctness

at the unit/integration testing phase

involves demonstrating that each
internal module or unit executes

correctly. Associated with each of these

modules is a structure or a sequence of

execution steps that must be followed in

order to achieve the desired result.

Therefore, it seems reasonable to project

that using test cases that exercise as

many of these sequences as possible

(i.e., coverage) would demonstrate

functional correctness. In fact, research

has shown that coverage techniques are

the best and most comprehensive

technqieus for showing functional

correctness at this level of testing. There

are other good techniques (and these

may be better at finding certain kinds of

errors) but at a minimum, coverage

should be demonstrated during

unit/integration testing 6.

There are three primary coverage

techniques. One of these techniques is

Branch Coverage 26. To perform branch

coverage the analyst must build a graph

that shows the flow of data through the

system. Figure 9 shows part of the

graph for the traffic controller problem.

2/25/92 26

Figure 9---Branch Coverage

T._mmti_

Or

r

thorough than branch coverage because

a single path may involve many

combinations of branches or logical

decision points. Path coverage, then ,

centers on showing that all combinations

of branches works correctly. Figure 10

shows the same graph as that shown for

branch coverage. However, selecting

and executing test cases to perform path

coverage results in three specific cases

rather than two for branch coverage

(once again follow the numbers by the

arrows in the figure). Describing the

specifics of these test cases is left as an
exercise for the reader.

Branch coverage then examines the

graph drawn to select test cases that

follow all possible branches in the

program (e.g., a branch is an arrow in

figure 9). These cases will cause the

program to execute each logical decision

point (e.g., if-then-else). Using the

graph of figure 9, two test cases are

selected for covering all branches

(follow the numbers beside the arrows).

Describing what these two cases are is
left as an exercise for the reader.

Another form of coverage is Path

coverage 26. Path coverage is more

2/25/92 27

Figure l O---Path Coverage

T.,,total, lira

{3}I_

__mowni ott
Or

Pe Wnm®

_.St,_IaL_

• Pmm v

The last form of coverage testing is

Condition coverage 26. Condition

coverage expands on path coverage to

show that all combinations of logic or

conditions at each decision point works

correctly. For example, a logic decision

point might be the statement:

If (A or B) then Perform C;

Condition coverage would attempt to

show that C is performed when (1) only

A is true, (2) only B is true and (3) both

A and B are true. Figure 11 shows the

same logic paths for the traffic controller

problem. Condition coverage will

generate more test cases than path

coverage in this case because of the

logic decision point where either a car or

pedestrian could request the light to
change (follow the numbers beside the

arrows). Describing these test cases

will, once again, be left as an exercise
for the reader.

Figure 11---Condition

Coverage

T,_c_t W

Or

Pemmw ®

As always, these coverage

techniques alone do not provide

complete testing. In part, because they

focus primarily on examining the

implementation. The technique of

2/25/92 28

Partition analysis 31 attempts to merge

analysis, of specifications .with, that of

implementation. This technique focuses

on a kind of path analysis of the

specification to identify partitions of test

cases based----o_----identify sub-

specifications. These partitions are

merged with- those of-the coverage

techniques just described to form a more

complete test suite.

The dynamic techniques just

described are most commonly applied to

individual units. This leaves a gap in

dynamically testing the integration of

these units. One technique that focuses

on this aspect of dynamic

unit/integration testing is called

interprocedural dataflow testing 9. This

approach focuses on analyzing the

interconnections between units (e.g.,

parameter lists) and global data. This

analysis results in a definition-uses table

that maps each global data item and unit

parameter to specific statements where

these are defined and used. Once this

table has been defined, test cases are

selected that exercise the statements

listed in the definition-uses table.

For example, consider the routine

shown in figure 12 to compute the

maximum of two integers. This

technique will focus on analyzing the

definition and use patterns of the

variable Max since its value will affect

the caller of IsMax.

Figure 12--Routine to

Compute the Maximum of Two
Numbers

1. Procedure IsMax(l, J: In Integer;

Max: Out Integer);

2. /.f I > J

3. Then Max :-- I;

4. Else Max := J;

5. End If;

6. End IsMax;

Having examined the routine one can

build what is called a summary graph or

an interprocedural flow graph that

further isolates specific statements

involving the parameter Max. Figure 13

shows how the flow graph might look
for routine IsMax.

2/25/92 29

Figure 13--InterProcedural
Flow Graph

Figure 14---Definition/Use
Table for IsMax

TableforkMax

Max

Ddm Use
m

3 6

4 6

By analyzing thisflow graph one can

build a definition/usetable as shown in

figure 14. Test cases will bc selected,

then, to exercisethose statements where

a given item in the table is used and

defined.

This approach is difficult to apply

for large complex programs without
some automated assistance. This is

primarily due to the fact that parameters

must be traced throughout the scope of
their use. Often times this will include

cases where the variable is referenced by

a different name (e.g., for the call

IsMax(A,B,C) the variable C is the same

as the variable Max inside the routine

IsMax).

Another approach for examining the

integrated units (as opposed to each unit

individually) is perform flavor

analysis 13. Flavor analysis is concerned

with showing that the developers did not

make any errors of omission. To do

this, each developer must specify

expectations about the software. Two

ways to do this involve using data

2/25/92 30

commentsor operatorcomments. Data
commentsuse a combination of both
propertiesand assertionsabout the data
to model the actual constructionof the
program. Whencomplete,the program
can be comparedagainstthis for errors
of omission. Operator_ comments
describe a specific legal sequenceof
operatorexecution. T_aesesequencesare
then matched against either human
analysis or .dynamic execution to
determine if it matches the operator
comments. Deviations in sequence
highlight anamolies in the software.
Furtheranalysismaydeterminean actual
error exists.

The approaches used so far have

primarily focused on identifying good

test cases. Yet, it would be helpful to

know just how good these test cases are.

One technique that helps answer that

question is Mutation testing. Mutation

testing is founded on the premise that a

test case that is capable of demonstrating

a program executes correctly ought to

demonstrate that an incorrect program

executes incorrectly. Therefore, this

technique calls for generation of mutant

programs (i.e., programs seeded with

errors; see figure 15) that can be
executed with the selected test cases.

Those that show correct results for the

mutants are not good test cases because

they are not capable of distinguishing

between a correct and incorrect program.

Figure 15--Mutation Testing

No

3om L _Cm

T,_camaL_

--'-@ t_T.2mmm

Or

Ik S_t_t

r

It should, be noted, however, that

mutation testing is a time consuming and

risky task if performed without proper

controls (e.g., configuration

management). It is time consuming

because the software is continually being
seeded with errors and then re-instated

to its original condition. It is risky

because the developer always faces the

risk of incorrectly removing errors from

the program.

Safety Corre_¢pess

Reliability testing 3226 is a good

technique for demonstrating safety

2/25/92 31

correctness. This technique seeks to

identify structures within the program
that could, should they fail, adversely

affect system reliability. These

structures may not necessarily be error-

prone. Looking at the traffic controller

problem, one might wonder what would

happen if the internal clock failed?
Would the light simply flash red in all
directions or would this failure cause the

lights to be stuck in their current

positions or would the lights become the

same color in all directions? Any of

these MIGHT happen. The key is to
decide ahead of time which is the safe

response and then test for it.

User-Interface Correctness

Testing the user interface will

involve breaking the parts of the user

interface into smaller pieces (this

follows directly from our looking inside
the black box view of the system) and

testing those smaller pieces
independantly. This will involve

stubbing out different sections of the

system to give the appearance of a

complete system. Using this approach,

user interface pieces can be simulated
much earlier before the entire interface

is complete. For example, the signal
hardware could be simulated via

software so that the traffic controller

system could be prototyped and

analyzed well before the entire system is
constructed.

Static Testing Techniques

General Techniques

As trivial as this may sound, the

most significant advancement in the

practice of software verification is the

inspection 526. Inspections introduce an

active verification frame of mind (e.g.,

sitting at a desk for the sole purpose of
analyzing a work product for errors).

Sound psychological evidence suggests
(and, in fact, this has been shown true in

practice) that this significantly reduces
the introduction of errors and increases

the teams confidence in the quality of
the software. With this in mind, let's

examine what inspections are all about.

Inspections fall into two categories:
formal and informal. In either case,

inspections are an approach to showing

correctness by forcing a team of people

involved with a given work product to

inspect each work product for errors
within the framework of some rules.

Kinds of Errors Caught by
Inspection

Participants in an inspection will

analyze a given work product to identify

major errors, minor errors and

suggestions. Both major and minor

errors indicate the work product must be

changed before the inspection is

complete. Major errors address a work

product that does not satisfy its intended

function (or specification). Minor errors
typically address non-function errors

such as a violation of some pre-

determined programming standard (e.g.,

variable naming conventions, etc.).

Suggestions do not identify errors at all,
but rather, indicate alternative solutions

to the one being inspected. Often times

suggestions speak to maintenance and

efficiency aspects of the product.

Roles in an Inspection

Each person that participates in an
inspection has a role. Typical roles are

2/25/92 32

those of moderator, developer and peer.

The moderator is responsible for seeing

that the inspection follows the rules.

The developer is the person responsible

for completion of the work product. A

peer is someone else that has some

involvement in the product (e.g.,

requirements writers, designers, project

leads, etc.).

From the group of peers come two

additional roles: reader and backup.

The reader is responsible for guiding the

inspection team through the work

product during the inspection. The

backup (who is usually also the reader)

is someone who is not primarily

responsible for completion of the work

product, but is expected to have a level

of knowledge about the work product

that is at or just below that of the

developer.

Inspection Rules

Each inspection must be governed by

a set of rules. These rules serve to (1)

allow measurement of the process (e.g.,

process error rate), (2) place

accountability for the quality of the

product at the team, not individual, level

(i.e., egoless programming) and (3)

prevent any issues from being

unresolved prior to completion of the

work product. Some example rules

might be:

• work products must be

distributed for review four days prior to

inspection (i.e., give inspectors adequate

time to inspect)

• a moderator must cancel the

inspection if adequate prepartion has not

been done by the inspectors

• the work product can not be

released until its inspection is complete

One problem that always seems to

arise when scheduling inspections is the

size of the work product. One approach

to handling the size of a work product to

be inspected is continuous inspections.

Continuous inspections focus on

inspecting the work product as it is

incrementally developed. For example,

when a program function is being

stepwise refined, there should be an

inspection at each level of refinement.

This approach obviously means more

inspections, but there is less to review at

each inspection and the later inspections
are more e_Tor-fl'ee.

Continuous inspections involve

primarily a developer and a peer. The

peer is assigned a specific time each for

inspecting the developer's work product.

Informal Inspections

Inspections can also be informal.

Informal inspections (or walkthroughs)

are informal because they use a less rigid

format for inspection. Sometimes this

means modifying some of the rules

regarding inspections (e.g., only small

changes can be reviewed informally) or

possibly inviting fewer people to

participate in the inspection. Usually,

the less rigidity of informal inspections,

means that there is no formal meeting of

the inspection team review the work

product.

Functional Correctness

Static testing techniques that

demonstrate functional correcmess fall

into two categories: specification-based
and structure-based.

2/25/92 33

Specification-based techniques focus

on analyzing the specifications (or

design) of the software to find errors.

One technique that does this is called

Anomaly analysis 322. Anomaly

analysis looks at sequences of events (as
derived from the software's

specification) to irmd anomalies. For

example, a sequence of events might

involve setting an entity and then using

that entity. A sequence where that entity

is set and then set again before it is used

is an anomaly. Anomalies do not

necessarily mean errors. They just

indicate areas where there might be

errors since these are not proceeded in

the expected sequence.

A similar approach to anamoly

analysis is Defect Analysis 32. This

techniques looks through the software to

make sure that no general kinds of

defects (e.g., divide by zero, index of the

end of an array, etc.) exist.

Stepwise Refinement 27"28, 23-25 is a

different kind of specification-based

technique based on inspecting differing

levels of abstraction. In this approach
one checks to make sure that each level

of refinement correctly and completely

describes the previous level.

Another specification-based

approach is pre/post condition

analysis 720. This analysis approach
works with stated conditions within the

design. The technique works to make

sure the pre-condition adequately guards

the associated implementation (e.g., if

the implementation divides one variable

by another, then the pre-condition ought

to indicate that the variable acting as the

divisor must not be zero) and that

execution of the implemenation satisfies

the post-condition.

One approach that assists in

analyzing pre/post conditions is symbolic

executionrS,1l. This technique involves

building a statement tree. Then,

beginning with the pre-condition,

mathematical symbols are used to trace

through all possible paths in the

statement tree. Mathematical symbols

are used in place of trying to pass every

possible value through the statement

tree. The results of this trace are then

matched agains the post-condition to

determine whether the execution is

correct. For example, consider the

simple routine of figure 16.

2/25/92 34

Figure 16---Routine to
Calculate Absolute Value

Figure 17---Symbolic
Execution for Routine Absolute

1. ABSOLUTE:

Procedure (X);

2. Assume (true);

3. Declare X,Y: Integer;

4. IfX<0

5. Then Y :-- -X;

6. Else Y := X;

7. Prove (Y=X' Or Y = -X') And

(Y >- 0 And X = X')

8. Return (Y);

9. End;

The pre-condition for routine

Absolute is expressed in the Assume

clause. Specifying the pre-condition as

true is intended to indicate that any

integer value can be processed. The

post-condition appears as the Prove

clause. Symbolic execution will show

that this clause is satisfied by tracing

mathematical symbols through the

statement tree of figure 17.

Another specification-based

technique is Axiomatic analysis 7.14.

This technique seeks to match an

2/25/92 35

implementation against a specified

collection .Of .s_stem properties or
axioms.

Another type of functional

correctness technique is structure-based.

Stmcture-basod_techn!.que s examine the

architecture of the software for any

error.s...One_stmcta_-based/_chnique is

Object-oriented Analysis 36, 22.15. This

technique works on software that has

been designed based on the object-

oriented approach of building modules

based on the data or state. Each object,

then, can only process certain allowable

or legal values. This serves as the

foundation for analyzing the correctness

of objects by showing that a given

operator for the object can accept only

legal inputs and produce only legal

outputs. This can be as simple as

analyzing one operator to analyzing

many combinations of operators.

Applying Object-oriented design to

the traffic controller problem might lead

to the identification of a timer object.

Associated with that timer object would

be operations to Reset the timer and

Decrement the timer. Given that the

timer will only be used when it has a

value greater than zero (i.e., the timer

has been reset). Once the timer reaches

zero is considered to be expired and is

no longer used. Therefore, a general

principle can be stated that the timer can

only hold non-negative values.

Next, each of the operators, Reset

and Decrement, should be analyzed to

see if this principle is satisfied. Reset is

responsible for setting the timer to a

specific window of time that should

elapse (e.g., 120 seconds). Decrement

will be used to mark the passing of time

(one clock pulse at a time) as long as the

timer has a value greater than zero.

Therefore, these definitions would

indicate that, indeed, Reset and

Decrement guarantee that timer will

never have an illegal value.

Another structure-based approach for

showing functional correctness applies

when modular programming languages

are used. This technique, called

Compilation testing 32, is used with

languages whose compilers can do

certain checking across modules. For

example, programs written in the

language Ada using its package

constructs can use the Ada compiler as a

checking mechanism to show that the

architecture of the packages is
consistent.

Safety Correctness

Static testing that help demonstrate

safety correctness focus on identifying

potential problems and then analyzing

how the system would respond should

those problems occur. The first

technique, Hazard analysis 17,18,

involves identifying undesirable

situations. For example, the most
undesirable situation in the traffic

controller system would be for all light

to be green in all directions. Once

identified, each hazard is analyzed to

determine how it could happen. Once

this scenario has been defined, the

software is analyzed to determine

whether this undesirable condition could

ever occur. If it could occur, then the

software should be modified to prevent

that from happening (e.g., the software

could perform a quick status check on

switching hardware to make the lights

can really be switched before tryhag to

switch the light).

2/25/92 36

A similar technique is called Fault

analysis 17.18. A fault is considered to be

any potential error in the system. This is

a slightly different approach from

Hazard analysis in that one is not

looking at effects, but at possible stimuli
for failures. Once these faults are

identified then the software can be

analyzed to determine what effect each

fault would have. Any faults that would

produce an undesirable effect need to be

addressed in the software.

2_5_2 37

Summary

The purpose of Part One was to give

insight into the current practice of

verifying and validating software. To

summarize the material presented, key

points made during the overview will be

reviewed along with key principles

regarding the many testing techniques

discussed.

Key Points

Part One presented several key

points that are important when applying

verification and validation approaches to

software. FirsL each term refers to

different parts of showing software is
correCL Verification works to show the

software was built correcdy. Validation

works to show the right product was

built. Both of these are required to show

the software is correct.

Second, testing software must be

done both dynamically and statically.

Static testing uses the skills of human

analysis to find errors early in the

software development process.

Dynamic testing involves execution of

the software on a computer. It has two

distinct parts: unit/integration and

system. Each of these addresses the

many levels of structure and sub-

structure associated with the software.

Third, verification and validation are

analysis tasks that focus on showing

software is consistent, complete and
terminates.

levels of detail to be expressed so that

the analyst is not overwhelmed with lots
of detail too soon. It also narrows the

focus of any analysis to two basic levels,
the abstract level and the refined level

(i.e., level n and leveln+l).

Last, modularity is an essential part

of building systems that are easy to

extend and modify (not to mention

build). Modularity allows developers to

cleanly separate a systems many parts

using a divide and conquer-type

strategy.

Comments on Testing Techniques

Many different techniques for testing

were presented in this document. These

are, by no means, the complete list of

techniques that are available for use

(refer to 34, 2 and 32 for more complete

lists of testing techniques). Hopefully,

the discussion of these techniques has

made it clear that (1) no testing

technique is sufficient by itself to

demonstrate correctness, (2) choosing

which techniques to use is both difficult

and important to do (never leave the how

of testing to chance) and (3) a logical

sequence or order exists for testing and

should be followed (i.e., pick a life cycle

and follow it).

Regardless of the techniques or

testing phases being performed the same

general principles apply:

Fourth, principled use of abstraction

and refinement helps manage the scope

of detail involved with any software

system. Abstraction allows varying

2/25/92 38

look for different categories of

errors (e.g. look for the "weak

links" in the system6)

select techniques that help f'md

errors early (and devote most of

the development effort to

applying those techniques)

"programs should be structured

so logical testing of various

abstractions of the program can

reduce actual testing of the final

program ''6

"specifications must be precise

enough to be testable ''6

2/25/92 39

Appendix A: References

1. Bezier, B.. Software Testing Techniques. Van Nostrand Reinhold Company,

Publisher, 1983.

2. Boeing Aerospace Company. Software Test Handbook: Software Test

Guidebook. Document No. RADC-TR-84-53 Volume 2 of 2. Rome Air Development

Center, Griffis Air Force Base, N'Y 13441, March 1984.

3. "Reliability Problems in Software Engineering - A Review." IEEE Software

Volume 2 No. 3 pp. 131-147, July 1987.

4. European Space Agency..Software Verification and Validation. Document No.

PSS-05-0 Issue 2 p. 2-22, February 1991.

5. Fagan, M.E.. "Design and Code Inspections to Reduce Errors in Program

Development." IBM Systems Journal Volume 15 No. 3 pp. 182-21 i, 1976.

6. Goodenough, J.B. and Gerhart, S.L.. "Toward a Theory of Test Data Selection".

IEEE Transactions on Software Engineering. pp. 156-173, June 1975.

7. Gries, D.. The Science of Programming. Springer-Verlag New York, Inc. 1981.

8. Hantler, S.L. and King, J.C.. "An Introduction to Proving the Correcmess of

Programs. r' ACM Computing Reviews. pp. 331-353, September 1976.

9. Harrold, M.J. and Sofia L.S.. "Selecting and Using Data for Integration Testing."

1EEE Software Volume 8 Number 2 pp. 58-65 March 1991.

10. Hoare, C.A.R. 'ff.ntroduction to Proving the Correcmess of Programs." ACM

Computing Surveys pp. 331-353, September 1976.

11. Howden, W.E.. "Reliability of the Path Analysis Testing Strategy." IEEE

Transactions on Software Engineering pp. 208-215, September 1976.

12. Howden, W.E.. "Symbolic Testing and the DISSECT Symbolic Evaluation

System." IEEE Transactions on Software Engineering pp. 266-278, July 1977.

13. Howden, W.E.. "Comments Analysis and Programming Errors." 1EEE

Transactions on Software Engineering Volume 16 Number 1, pp. 72-81, January 1990.

02/24/92 A-1

Appendix A: References ...

14. Jalote, P.. '_Testing the Completeness of Specifications." 1EEE Transactions on

Software Engineering Volume 15 No. 5, May 1989.

15. Korson, T. and McGregor, J.D.. "Understanding Object-oriented: A Unifying

Paradigm." Communications of the ACM Volume 33 No. 9 pp. 40-60 September 1990.

16. Leite, I. and Freeman, P.. "Requirements Validation Through ViewPoint

Resolution." IEEE Transactions on Software Engineering Volume 17 No. 2 pp. 1253-

1269, December 1991.

17. Leveson, N.G.. "Safety." Aerospace Software Engineering: A Collection of

Concepts. Ed. Christine Anderson and Merlin Dorfman. Volume 136 pp. 319-336,

American Institute of Aeronautics and Astronautics, Publisher. 1991.

18. Leveson, N.G.. "Software Safety in Embedded Computer Systems."

Communications of the ACM Volume 34 No. 2, February 1991.

19. Linger, R.C., Mills H.D. and Wit't, E.I.. Structured Programming: Theory and

Practice. Addison-Wesley Publishing Company 1979.

20. Liskov, B. and Guttag, J.. Abstraction and Specification in Program

Development. McGraw-HiU Book Company 1986.

21. Maibor, D.S.. "The DoD Life Cycle Model." Aerospace Software Engineering: A

Collection of Concepts. Ed. Christine Anderson and Merlin Dorfman. Volume 136 p. 34,

American Institute of Aeronautics and Astronautics, Publisher." 1991.

22. Meyer, B.. Object-oriented Software Construction. Prentice Hall, Publisher 1988.

23. Mills, H.D.. "Structured Programming: Retrospect and Prospect." IEEE Software

Volume 3 No. 6, November 1986.

24. Mills, H.D., Linger, R.C. and Hevner, A.R.. "Box Structured Information

Systems." IBM Systems Journal Volume 26 No. 4, 1987.

25. Mills, H.D., Linger, R.C. and Hevner, A.R.. Principles of Information Systems

Analysis and Design. Academic Press, Inc. 1986.

26. Myers, G.J.. The Art of Software Testing. John Wiley & Sons, Publishing 1979.

02/24/92 A-2

Appendix A: References ...

27. Myers, G.J.. Software Reliability Principles and Practices. John Wiley & Sons,

Publishing 1976.

28. Myers, G.L. Reliable Software Through Composite Design. Mason/Charter

Publishers 1975.

29. Myers, G.J.. Composite/Structured Design. Litton Educational Publishing 1978.

30. Pamas, D.. Software E.ngineerinK Principles. Department of Computer Science,

University of Victoria. Report No. DCS-29-IR, February 1983.

31. Richardson, D.J. and Clarke, L.A.. "A Partition Analysis Method to Increase

Program Reliability." Proceedings, Fifth International Conference on Software

Engineering pp. 244-253, 1981.

32. Science Applications International Corporation. "Task 1: Review of Conventional

Methods." Guidelines for Verification and Validation of Expert Systems. Document No.

SAIC-91/6660, 1991.

33. Stevens, W.P. and Myers, G.J. and Constantine, L.L.. Structured Design." IBM

Systems Journal Number 2 pp. 115-139, 1974.

34. Wallace, D.R. and Fujii, R.U.. "Software Verification and Validation." IEEE

Software Volume 6 No. 3 pp. 10-17, May 1989.

35. Wilson, W.M.. "NASA Life Cycle Model." Aerospaae Software Engineering: A

Collection of Concepts. Ed. Cbxistine Anderson and Merlin Dorfman. Volume 136 pp.

319-336, American Institute of Aeronautics and Astronautics, Publisher. 1991.

36. Yourdon, E. and Coati, P.. Object-Oriented Analysis. Prentice Hall, Inc.

Englewood Cliffs, NJ 1990.

02/24/92 A-3

Appendix B: Techniques Vs. Phases

Techniques

Active Interface Testing

Anomaly Analysis

Attribute-Based Test Case

Selection

Axiomatic Analysis

Boundary Testing

Branch Coverage

Cause-Effect Graphing

Competing Designs

Compilation Testing

Condition Coverage

Defect Analysis

Phases

General System Unit

e'

v'

e'

Static

021"24/92 B-I

Appendix B: Techniques Vs. Phases ...

Techniques

Error Guessing

Fault Analysis

Flavor Analysis

Hazard Analysis

Independent V&V

Inspections

Interprocedural Dataflow

Testing

Mutation Testing

Object Oriented Analysis

Partition Testing

Path Coverage

Phases

General System Unit Static

¢,

,/

¢,

¢,

02/24/92 B-2

Appendix B: Techniques Vs. Phases ...

Techniques

Performance Testing

Pre/Post Condition Testing

Phases

General System Unit

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

,/

e'

v'

Stepwise Refmemem

Stress Testing

Symbolic Execution

Static

02/24/92 B-3

Appendix C: Techniques Vs. Correctness

Techniques

Active Interface Testing

Anomaly Analysis

Attribute-Based Test Case

Selection

Axiomatic Analysis

Boundary Testing

Branch Coverage

Cause,Effect Graphing

Competing Designs

Compilation Testing

Condition Coverage

Defect Analysis

General

Kinds of Correctness

Functional Safety UI RCC

. .

. q/

Utility

2/18/92

C-I

[-

Appendix C: Techniques Vs. Correctness ...

q

Techniques

Error Guessing

Fault Analysis

Flavor Analysis

Hazard Analysis

Independent V&V

Inspections

Interprocedural Dataflow

Testing

Mutation Testing

Object Oriented Analysis

Partition Testing

Path Coverage

General

Kinds of Correctness

Functional Safety UI RCC Utility

C-2

2/18/92

Appendix C: Techniques Vs. Correctness ...

Techniques

Performance Testing

Pre/Post Condition Testing

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

Stepwise Refinement

Stress Testing

Symbolic Execution

General

¢

¢

Kinds of Correctness

Functional Safety UI

¢

¢

¢

¢

¢

RCC

¢

Utility

2/18/92

C-3

f Appendix D: Techniques Vs. References

¢

Techniques

Active Interface Testing

Anomaly Analysis

Attribute-Based Test Case Selection

References

32

32,2

32

Axiomatic Analysis

Boundary Testing

Branch Coverage

Cause-Effect Graphing

Competing Designs

Compilation Testing

Condition Coverage

Defect Analysis

Error Guessing

Fault Analysis

Flavor Analysis

Hazard Analysis

Inspections

lnterProcedural Dataflow Testing

7,14

26

26

26

16

32

26

32

26

17,18

13

17,18

5,26

9

2/18/92

D-I

Appendix D: Techniques Vs. References ...

Techniques

Mutation Testing

Object Oriented Analysis

Partition Analysis

Path Coverage

Performance Testing

Pre/Post Condition Testing

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

Stepwise Refinement

Stress Testing

Symbolic Execution

References

352114

30

25

31,312

19

31

31

31

31

26-27,22-24

125

8,11

2/18/92

D-2

Appendix E: Examples of Life-Cycle Models

........DoD-2t67

ProcessModel

E-1

Appendix E: Examples of.Life-Cycle Models

Verify

E-2

Appendix E: Examples of Life-Cycle Models

I

NASA Life-Cycle Model

E-3

02/1)7/9'2 09,:17 AM

Expert Systems V&V Guidelines Workshop:

Part 2: Expert Systems

By Scott W. French and David O. Hamilton

This section is part of the Expert Syoems V&V workxhop. It _nnuzr_es the

Mmilarities and d_erences between _ systems and conventional software, how these

Mmilaririe$ and differences impact V& V, and new techniques that addre_ these impacts.

February 1992 I

02/07/92 09:17 AM

Table of Contents

Introduction .. 3

Key Terms 3

Expert System Differences .. 4
Exp_ Systems are _e .. 4
Expert System Implementation Differences 4

Expert System Problem Differences .. $

Two Trafl_ Light Controller Implementations __;.................... 7

ScmmrioTeseng .. 7
Testing State Changes... ... 7

Handonts and Exercise ... 9

Conventional Implementation .. I0

Expert System Impknuentation .. 10
Comparison and V&V Implications ;:_-; :.................... 10

Handout and Exercise.._......__ ... 11

Testing Good and Bad Designs ... 12

Expert" Trafr_ Light Controller Problem .. 13

Knowledge Aquisition Results ... 13

Problem Features .. 14

Expert System Implementation V&V Techniques 15

Overview ... __ =: 15

Rule Consistency Checking .. 13

Data Consistency Checkmg .. 17
se_avity Aa_ys_ .. 17
Structural Testing .. 17

Speciacaeon-Directed An_yst5 ... _S
Expert System Problem V&V Techniques ... 20

Knowledge Acquisition Correcmess Checking 20

Minimum Competency Testing 21

Disaster Testing ... 22

Expert Review .. 22

Summary : ... : 24

February 1992 2

02/07/92 09:17 AM

Introduction

Goals

The primary purpose of this section

is to explain the major teclmques that

have been developed for V&V of expert

systems (E.Ss). These special teehn es
have been developed because ttme me

significant differences betwee_ F3s and

convenuonal software (CS); these

differences make it so that existing CS

V&V techniques are not adequate.

At the conclusion of this section, the

student should:

1. understand the key similarities and

key differences between CS and ESs

. undermm_ how the differences

affect V&V of ESs (Le., what new

V&V problems or issues are created

by these differences)

3. understand various V&V techniques

that have been developed m

overcome the problems and issues

Key Terms

There is no well esmb_ precise

definition for ES or for Knowledge-

Based Systems (KBS) but we will take

the foUowing definitions:

Expert System: computer programs

that emulate the problem solving

tedmiques of a human expert m

solve complex problems

Knowledge-Based System: computer

programs which use domain or

heuristic knowledge to solve

complex problems

Knowledge Engineer:. a person

involved in the development of an

ES (includes knowledge acquisition

as wen as all the traditional activities

of CS)

The key difference in these

definitions is that a KBS may not use the

problem solving techniques of a human

expert. So an ES is a KBS bm a KBS is

not necessarily an ES. We will focus on

ES characteristics with the

understanding that some of the

characteristics may not hold for just
KBSs.

Overview

First, we will summarize both the

similarities and the differences between

ESs and CS. The basic similarity

between ESs and CS is that they are both

software. Students may accept this fact

readily but others may strongly disagree,

arguing that ESs axe much more than

just sol.rare. To eliminate debate on

this issue, it is suggested that the

instructor say that the V&V issues we

can address rely on viewing ESs as
software. All other V&V issues relate to

the nature of knowledge itself and lie

VII.-4

PRECEDING PAC_ BLANK NOT RLMED
02/07/92

02/07/92 09:17 AM

outside the realm of engineexing and in

the of ph osophy andmetaphysi
(i.e., epistemology). If this is

insuf_cient, then the Roger Schank

quote fixnn pan 3 ('AI entails massive

software engineering") and simly force

the student to admit that the

devedopmem of ESs at least involves a

lot of softwaze. That is, an ES may be

more than software but it is mostly

software.

ESs can differ from CS in two

ways.

1. ESs are often implemented using

non-procedural languages (we will

call this group of differences the

"implementation differences')

2. ESs problems have different

characteristics (we will call this

group of differences the "problem

differences')

The first group of differences

primarily affect lower level (white-box)

testing while the second group of

differences primarily affect higher level

(black-box) testing. For this reason, we

can focus on each group of difiSeaeaces

independently.

We w-al illusum_ both groups of

differences using the Traffic Light

ControUer (TLC) problem. First, to

illustrate the implementation diffea'ences,

we will look at two solutions, one

implemented as CS and another using a

non-procedural language (CLIPS). Then,

02/07/92

to illustrate the problem differences, we
will introduce a new "enhanced" version

of the TLC problem. This new problem

will have more of the problem
differences of ESs.

Finally, using the TLC problem, we

will look at the major new ES V&V

techniques. We will fizst look at

techniques that have been developed

specifically to address implementation
differences. We will illusuate the

techniques on the CLIPS solution to the

TLC problem and provide some practice
exercises. Then we will look at

techniques which address problem

differences, illustrate them on the

enhanced TIC problem and provide

some more practice exercises.

VII-5

02/07/92 09:17 AM

ExpertSystemdifference

Expert Systems are Software

First and foremost,ESs are software.

That is,they are computer programs that

are written in some type of

programming language and are executed

in a (digital) computer. It may be

difficult, in general, to determine

whether any #yen computer program is

(or should be called) an ES. It may have

only some of the chamcter_cs of an ES

or parts of the program may not have

any ES characteristics at all.

For this reason, one should be

careful when caring anything an ES or

not an ES. It is better to simply think of

a program as just that, a piece of

software, but with certain characterLq_.

And when a piece of software has some

ES characteristics, its V&V should
account for those characmrisdcs.

One should also be careful when

analyzing a program to be solved with a

computer program. It may be tempting

to decide in the very beginning that the

solution should be an ES. This approach

can lead one imo devdoping a solution
that fits all the characteristics of an ES

(because that is what was set out to be

built) only to find out that an ES is not

the best solution to the lz'oblcm. Instead,

one should just develop the best solution

m the lm'oblem, nodng the chamcteri_cs

the solution begins to take and adjusting

the development and V&V approach

based on the merging characteristics.

The problems that can be caused by

pre-detennining a solution to be an F..S

can easily be seen by noting the

following. One might prototype a "pure"

ES solution to a problem and find that it

is not at all acceptable, say for

performance masons. This could

possibly be fixed by re-coding small

pieces of it in a different language. But

if one has a fixed "allor nothing" vision

of an ES solution, they might take much

more drastic actions such as simply

abandoning the problem or changing the

problem so it is no longer an "F_,S

problem ".

Expert System Implementation

Differences

The most recognizable ES

characteristics are implementation

characteristics such as the language

used. This has led many people into

using a so call_i"ES shell" if they think

their problem qualifies as an ES.

Because our focus is on V&V and not

ES development, we will not discuss

when an particular ES implementation

approach should be taken but will

instead discuss the V&V implications of

various ES at_roaches.

Common "AI languages" used

include:

02/07/92

VII-6

02/07/92 09:17 AM

• forward-chaining rules (also known

as prodnction systems)

• backward-chaining rules (e.g.,

Prolog)

• fi-.,me-based languages (e.g., KEE)

• LISP

With the exception of LISP, all the

above languages share a common

feature; they are non-procedural.
Procedural programs are executed in a

Inedictabte fashion; it is straightforward
to determine which statement wW

execute next. Each deciskm statement

(which determines the statement that

will execute next) is a test on a uniquely

identif_ set of variables. By checking

the values of those variables at any

moment of execution, one can easily see

•which "direction"the branch will take.

Non-Proeedur21 Lan_na_s

In non-procedural languages, it is

not saaightforward to determine which
statement will execute next. There are

no explicit decision statements thai

determine the next statement. Instead,

there is a set of conditions, or tests, that

are all looked at together to determine

the next statement. Additionally, most

often these tesm do no olmme on a

unique set of variables. Instead _ can

potentially match or unify with a

possiblly large number of different

variable combinations. However, it is

widely advocated that the developer not

u'y to determine the sequence of

statements in a non-procedural program;

this is the "wrong" way to think about

such a program. The "right" way to think

is "declaratively".

Thinking about a program

declarativeiy involves clearly separating
control fi'tnn data. Control in a now

procedeml program is usuany handled
by a runtime "infezcnce engine". The

inference engine looks at the data (or

more accurately, the entire state of the

program) and dec_.¢l_which statementto

_'ute next. The programmer, ideally,

only think about the cozre_ of

data, l_g control to the inference

eni_ne.That is,the programmer _o_d

not be concerned about the order

statements_ be exe_texl.In l_ac_ice,

programma's do need to be concerned

about the order of execution. For

example, a common error in production
systems is to code a set of roles that

wozk con'ecfly only when executed in a

particular order which happens to be the

order they are initially executed. Then,

when a seemingly innocuous change is

made thaz affects the ordering of rule

firings, the program no longer works. In

this example, if both the expected and

actual ordering were explicit, one could

verify _ they matched (i.e., the

program was correct). As it was, both

the expected and actual order/rig was

implict so it was very di_cuh to tell if

O2/O7/92

VII-7

02/07/92 09:17 AM

the program would executed

Iterafive Development

as an increased amount of regression

testing.

Lack of Exl)lldtAieorith m

Another ES implementation

difference is that KSs are often

developed in a highly iterative fashion.

Almost all software is developed

iterafivdy (e.g., by the Spiral life-cycle

model) but KS are developed more

iteratively. That is, many more iterations

are typically used in the devdopmem of

an ES and each iteration has only a small
amoum of added function.

The amount of iteration is especially

high if the development of an ES heavily

relies on knowledge aquisition- Experts

typically can not express all of their

expertise at once and dxis creates the

need for many separate knowledge

• aquisition sessions. In between the

sessions, it is generatlygood to add the

newly aquired knowledge to the existing

ES (to see how well the new knowledge

wodcs with the old).

Another reason for a high amount of

iteration that, often with ESs, it is not

clear whether the proposed solution is

going to work well. In these risky

situations, it is best not to go too far

before evaluatin$/testi_. This also leads

to many small iterations of devdopment.

The primary affect of a highly

/terafive development cycle on V&V is

CS programs have been described as

"algo_J_n + data structm_". However,

as we have previously discussed,

gmemlly have no explicit algorithm

(i.e.,no explictcontrolover executionof

statements). Instead, the ES progammer

is encouraged to dedar_vdy define the

solution and leave the algorithm aspects

to the inference engine. As we have

seen, dm can be a naive _proach.

Experts do have problem solving

approaches which contain procedural

knowledge. The problem solving

method may not be completely

sequential and may be more heuristic

than algorithmic. Whether or not the KS

follows the same program solving

method as a expert (in which case it

would be just a KBS), it is important to

make the problem solving method

explicit and verify both that it is correct
and that tim KS follows it.

Expert System Problem

Differences

In addition to how an program is

implemented, it can be characterized by
the type of problem it attempts to solve;

this is especially true of ESs. ESs tend to

solve problems that are either higkly

02_7D2

VIL8

02/07/92 09:17AM

complex or have been more

solved by man than machine.

Man vs. Machine

easily

Often, ESs are developed to solve

problems that have beea mutindy solved

by lmman experts. In these cases, a

solution already exists (in the humans

head) and may need only be tmmlated

into a form that can be executed by a

computer. To a large extent, ES

technology was developed to allow this

to be done. Often this is done by

translating expert heuristics (rules of

thumb) into ff-thea ru/es that can be

executed. These types of systems lame

come to be called "shallow" or "design

by knowledge aqu/sition" systems

because such systems are shaUow in that

they do not "understand" what they are

doing and are developed directly from

knowledge acquired from an expert.

Correctness of these types of

systems is more like testing a human

expert.

Comolex Problems

Often, ESs are btn'lt in an attempt to

solve a problem has been prt_en very

diffxtdt to solve (with a computer

program). This is bectnse the tools

languages usmflly associated with ESs
make it much easier to solve certain

types of problems. V&V of solutions to

these complex problems can be difficult.

02/07/92

If it is difficult to determine the

cotrecme_ of any specific answer (e.g.,

optim,d sc_hedunng of many htmdreds of

items) then it win be _t to

determine if the ES solution has come

up with a correct answer. If the

"conecmess" of the answer can not be

determined analytically and instead must

be detenn/ned by "e_en opin/on", it

will be difficult for anyone other than

the expert to determ/ne the _
ofthe ES.

FinaLly, ESs are often used to assist

or advise an human expert. That is, the

F.S does not make decisiotm but only

suggests decisions to a human expert
who will make the final decision. There

is often a desire to decttme the amount

of V&V of these types of systems

bec_me if t.he F.S/s wrong then it/s felt

that the expert win always catch it

before any harm is done.

VII-9

02/07/92 09:17 AM

,Two Traffic Lip_ht Controller

l mlementations

Overview

To ill_ both the implementation

and problem differeaces between ESs

and CS, we will look the Trafftc Light

Controller (TLC) problem. First we will

look at testing black box solutions to the

TLC problem and them we will compare

an ES implementation to a conventional

implementation for the the same TLC

problem in order to i/hmrate the

implmentation differmces. Then we will

look at a more "expert" type of TLC

problem in order to illusuate the

problem differences.

Scenario Testing

In Part I of this course, it was

pointed out that black-box testing of a

system involves identifying scenarios

and the executing those scenarios (with

differing stimulus) and looking to see if

the correct response is received. Often,

much of the work in black-box testing is

identifying and descn'bing all the

scenarios. A good way to wproach this

is to first identify certain visible events

that can occur in the system and

descn'bing scenarios in terms of
combinations of these events.

For example, in the TLC pt'oblem,

we can identify the following events.

I.switch:when thetrafficlightchanges

(e.g.,from green tored)

2.approaching: when an approaching

auto (or pedestrian)comes in the

direction of the green light

3. waiting:, when an auto (or

pedesuian) is waiting for the light to

change (i.e., they have appro_:hed

from the direction of the red light)

4.(t, e): when a _ time, t, has

elapsed since the lastevent and at the

same time, event • occtl_

Givm these events, we can begin to

identify certain scenarios that could be

tested. For example:

l. (2 minutes, switch) (2 minutes,

switch) : this scenario occurs when

there are no approaching or waithlg

traffic and the fight switches every 2
minutes

2. (t: t < 2 minutes, approaching) (2

minutes, switch) : this scenario

occurs when wproaching traffic is

detected before the light can change
(i.e., less than 2 minutes since the

last switch event); in this case the

light should wait another 2 mintues

before switching

3.(t: t < 2 minutes, waiting) (15

seconds, switch) : this scenario

occurs when a car (or pedestrian) is

waiting for the fight to change; in

02/07/92

VII-IO

02107192 09:17 AM

this case, the light should switch in
15 seconds if no other event occurs

in that time

These are only some sample

scenax_. We can not list an the
scenados because there are an infinite
number of scenarios that can be
constmcte_ There are an infinite
numbe_ because there is no limit on the

len_nh of the chain of events in each
scenario. For example, we the light can

change every 2 minutes for ever;, this

simple event chain itself is, themetical]y,

of infinite leng_

Testing State Clumges

An aRemadve way of idmdry_
tests is based on state dumges in the
system. The tests are used to verify that
the system makes the correct state

change in each situation. However,

additional anatysis is Rqeized in o_er to
emure that the states and state changes

xc_lt in correct behavior of the

system. So this is not to be used as a
validation technique but it is a good

verification technique since k can
comprehensivdy cover the complete
range of possible _o_

This type of testing is sometimes
called confozmance testing. A state
diagram (or equivalent _) is
created and analyzed to con'ecdy solve

the problem. Then the solution is shown
to conform precisely to the state diagram
through exhatmive testing.

Addifiona]ly, the state diagram can

be consu'ucted at differing levels of
detail to correspond to varying levels of
testing. For example, at a high level, we
can identify the following states in an

abstract solution to the TLC problem:

>> S : The system is currently in
1

the state of "waiting for 2
minutes" before changing the
light. That is, it is continuing to
count off 2 minutes since the last

event before changing the light.

>> S : The system is currently in
2

the state of "waiting for 15
seconds" before changing light
but has not waited 45 seoonds

yet. That is, some time in the
past, the system began a 15
second wait, is still waiting for 15
seconds to expire, and may have
restarted this wait a few times but
not for more than 45 seconds.

>> S : The system is in the remainder
3

of a 1 minute wait. That is, at some
dine in the pas_ the system begain a
15 second wait which ithas restarted

so many times (due to approacing
cars or pedestrians) that it has been
great_ than 45 seconds since it fixst
started the 15 second wait. And thus,

the system will need to switch the

lightwithin one minute of starting

thefirst15 secondwait

t:'____ .4- 'J'

02/07)92

VILli

02/07/92 09:17AM

The system c_uld switch fi'om one

state to another based on the following

possible events.

1.approaching (a car or tmlestfian is

detected in the direction of the green

Ught)

2.waiting (a car ot pedestrian is
detected in the direction of the red

light)

3.t/me eap/res (the system is in the

state of waiting for a particular

amount of time, say t, and it has

been t seonnds since the system

began waiting for t seconds)

4. < 43 seconds in S (the system is
2

in state S and has been in S
2 2

for less than 45 seconds)

5.>= 45 secondsin (the system
in state S and has been in S

2 2

for more than 45 seconds)

For each event, we can define a state

transition (a change from one state to

another) that will both ensure correct

operation of the system. This is shown in

the follow state diagram.

&

I

We should first analyze this state

diagram and convince ourselves that it
descn'bes a system that correctly solves

the problem. To do this, we need to look

a_ completeness and consistency.

Completeness includes looking to make

sure that the system has all the right
actions (Le, a complete set of resptmses)

and accepts all the tight inputs (i.e., has

a complete set of stimulus). Concistency

involves making aue that the system has

the correct response for each stimulus,

wkhout violating any constraints.

The system only has one n_lxmse

and that is to change the light. This

response is covered when the system

makes any transition into S (i.e., a time
1

expire0. The system has only two stimulL an
appmaciag or a waiting car or petksuiaa, which
are beth coven_l.

Now lets look at each of the seven state

traz_tions and _ that they ate

with the _eae_

I

a

02/07/92

VII-12

02/0?/92 09:17 AM

i. (approaching and not time expires) If
an =_oacbinS car or _ is
detected before 2 minu_ has

elapsed then there should be no
response. This is consistc= wid_ the
sta_ diagram.

2. (waiting and not time expires) If a
waiting car or pedesuian is detected
before 2 minutes has elapsed then
the system should change the light
after 15 seconds (assuming no other
stimulus. This is consi=ent with the
tran_e_ to S .

2

3.(_g and not time expixes

and < 45 seconds in state $2.) If we

are waiting for 15 seconds due to a
waiting car and m _g car
or pedimian is detected, ehen we
should wait for ane¢l_ 15 seconds,

assmning we have been waiting less
than a total of 45 seconds. This is

consi=e_ with staying in state S.
2

4.(appfoadxing and not time expires

and>= 45 seconds instate $2) If we

are waiting for 15 seconds due to
someone waiting and we detect
someone is aplnow.hing bet the
waiting p=son h= aheady be_
waiting for 45 seconds _ more, then
we basically need to ignore the
approaching signal and change the
light after a total of one minute. This

0_7_

is consistent with the _ to
stateS.

3

5, 6, ?. (if any timer exphes)
Regardless of what event occurs, if
we have detexmined that it is time to

change the fight (i.e., someone has
been waiting long enough) then we
should change the fight. This is
consistent with the state diagram.

Thus far, we have shown that all the
state transitions are consistent with what

is prescribed by the requ_e_, we
should aim zeview the zequirements to
make sine that there are no siraafions

that are not covered by any of the state
transitions. Unfommately. there is no
mechanical technique for doing this
(unle= the n_==ents are akeady
broken into =nail individual

_e=cs whichourreqeir_en= are
not). One should just think through the
requirements, looking for thi.gs that
have not yet been considered.

Once we convince our state diagram
descn'bes (atntra_y) a system that
meetings the nutuirements, we now need
only check that any proposed solution
correctly matches the state diagram.
Thus, by creatingthe state diagram,we
have takenone huge problem(v_.fying
a proposed solution to the zequin_ents)
and decomposed it into two smaller
problems (verifying the state diagram
and verifying a proposed solution
against the state diagram). This type of

is som_ c_led

VII-13

02/O7/92 09:.17AM

"conformance testing" bece_e a
proposed solution is checked to see

it exactly conforms to a more abstract

solution (e.g., a state diagram).

One difficulty is that if we are given
a proposed solution and we can only

observe the responses that the system
makes (i.e., we can only see whether it
_anges the light or not), then we

not check that it conforms to the state

diagram. This is because we can not
directly see the internal state changes of

the system. If we can not see inside the
system (i.e_, white box testing), then we
are back to having to infer state cha_es
from the different stimulus/response
pairs.

One last point is that h would be

much easier to check that a pmlxw_d

solution conforms to the state diagram if

its _ is similar to the state diagram.
For example, if there was an internal

variable that could held either the value

1, 2, or 3 depending on the state the
system was in (conesponding to
states in the sta_ diagram), then it would

be very easy to match the current state of
thesystemto thestatediagram.

Handouts and Exercise

There are 3 _ handouts, each

describing one proposed solution to the

T_ problem. By dividing the dass into

3 teams, each team can focus on one of

the different solutions.

Each team should spend a few

minutes analyzing the proposed solution

given them and compare it to the state

diagram. They should also develop a set

of test cases that will detenn_ ffthe

proposed solution truly conforms to the

state diagram.

Conventional Implementation

The conventional implementation is

an Ada program, h is designed after the

state diagrmn in that the internal stme of
the Ada program is easily recognizable
at all times by looking at the value of the
variable "State". There is a case
statement that simply looks at the
cunm_ event and decides which state, if
any, to transition to next. This case
statement is simply repeated endlessly.

Expert System Implementation

There are actually two different ES
implementations. They are called ESs
because they are hnplemented in the
non-procedural language CLIPS. One
may argue whether or not they are ESs

because they are solving a rather

eonvemional problem (the
problem). However, since they do

ilium-ate the issues created by non-
procedural languages, we w_ call them
ESs for our Imrpose (and we will refer to
them as either the "ES implementations"
or the "CLIPS versions".

02/07/92

VII-14

02/07/92 09:17AM

Later,wewill discussthedifferences
betweenthese two implementations but

for now, we will compare the both of
them to the Ada solution. We can do this

because both CL2PS versions are

in that they are both simply a set of roles

that decide which state, if any, to
transition to next.

Comparison and V& V

Implications

If we compare the ES

implementations to the conventional

Ada implementation, we can notice a
few feantres that make the F.,S solutions

appear to be much easier to V&V.

First, the rules each look very much
like a state W_n_,_'im_ statemem. The

general form of a rule is "if we are in

state so and so and the cunent event is

such and such then we shou/d transition

to state so and so (optionally performing
an the external response of switching the

light)'. Thus, the ES implememations
are relatively easy to compare the the

state diagram.

Second, both CLIPS versions are

much shorter than the Aria version. So

thm'e is much less ES code to verify.

This is pr_arily due to the pauem

matching feature of CLIPS enabling a

single rule to mau:h many different but

sim_ar simmions (i.e., each rule can do

more).

Finally, ff one looks closely at how

the Ada version was designed, one can
notice that it resembles a crude inference

engine. The loop around the case

statement means that the Ada program

will _lx_glly look for a certain

condition and do the associated action.

This is very sinn'lar to a production

system which l_-1_atedly looks for the

right rule to rite. In the Ada program,
the inference engine, crude as it is, had

to be coded and V&V'ed along with the

rest of the progrmn. But in the CLIPS

versions, the built-in CLIPS inference

engine was used.

Because of these differences, the ES

approach seems much preferable to the

procedural Ada appmach. The ES

approach leads to smaller progrmns
which should reduce the V&V effort.

But there are other charactefi_cs of the

ES implementations which should also
be considered.

Although the ES implementations

have less code, each rule can have

compex interactions with other rules. In

the procedural Ada version, it is

realifively straightforward to determine
the order of execution of each statement

but in the _ versions, it can be

difficult to determine the order of rule

firings. Rule firing order can depend on

a combination of condition logic,

priorities, and other crideria such as the

number of conditions (specificity) on
each rule. There are also other

02/07/92

VII-15

02/O7/92 09:.17AM

implememmion conccxns for the ES

implememafions which are typically not

used in procedural implememafions such

as the deletion of no longer needed

dynamic variables (i.e., garbage

collection). Thus, the Ada version,

though larger, has more straightforward

logic with less complicated internal

interactions.

Much of the nature of procedural

languages is due to efforts to simplify

the internal interactions of programs in

or to make them simpler and eaiser to

understand (and thus to verify). Most of

the structured progmnming concerns are

directly related to issues of verification.

Because most non-_ languages

are "unstmCnL,_", programs written in

t/_m can be harder to ver/fy.

So it is not the case that ESs are

harder or easier to vexify but instead that

they have different V&V issues. That is,

in some ways they are harder but in

some ways they are easier to verify. In

summary, procedural programs have

more decisions and ccmtrol structures to

test while ESs have more complex

internal/meractiom such as side-effects,

gmbage collect/on, generality of pattern

matching, and rule interaction.

The d/ffetem concerns of ESs mean

that existing V&V tedmiqhes, which

were created for procedural progams, are

not as appgopriam for ESs. Existing

procedural ms_g techniques are largely

focused on ensuring thai the

implementation solves all aspects of the

problem; techniques such as path

coverage and requir-_nents tracing are

examples. ES testing also needs to

address the potentially unexpected

consequences of the complex internal

interactions; ES V&V will have more of

a focus on this issue than txocedural
V&V has.

Another way m view the differences

between ES and conventional V&V is

from the perspective of AI. ES

languages are largely modeled after the

way most psychologists believe humans

think (at a high level, not at a

neurological level) instead of on the

design of a computer (like a procedu_

language is). Given this, we can look at

the camgories of mental errors humans

make. These categoriesinclude things

such as ._ps/l_, exceptions to

generalizations, and erroneous beliefs.

Slips/laps_ are _ple errors such as

making a typographical error. These

types of errors are most often

to interuption in trains of thought. For

example, one may start to type the word

"verification _, think of its relation to

"validation", and type "velidation".

These types of mistakes can be

to roles which are similar enough that

they both fire but they have

incompatible results.

Exceptions to generalizations occur

when a generalization is made and then a

new never-before-seen exception is

02/07/92

VII-16

02/W//92 09:17AM

enco_ A similar type of e_mr

occu_ when one simply forgets to treat

the situ_on as a special case. This c_
be likened to either a rule tl_ is too

general (i.e., does not account for the

new exception) or a frame system
without a specialization for the

exception. The s_m_ar type of

error (forgetting about special cases) can
be likened to a rule or frame based

system that contains the exception but,

for some reason, does not recognize the

s_uafion as being a special case (a more

concrete example of an production

system analogue is when conflict

resolution does not correctly identify the

most specific rule and incorrectly fires a

more general rule).

_=_eous beliefs are _y
that are thought to be true but are not.
These can be h'kened to rules or flame

definitions that are simply not right.

Error categories such as slips/lapses

and generalizations directly relate to the
effects of complex internal interactions

typical of many non-procedural

programs.

Handout and Exercise

Just as in CS p_gr_mming, O_ere are

good and bad ways to design goOams

written in non-procedural ES languages,

good and b_ in the sense of being easier

or harder to verify. Before p_esenting

some ideas related to good and bad ES

designs (and their effect on verification),

some handouts (#2, 3, 4, 5) are given out
that conta/n two CLIPS sohnions to the

TIC problem and some related

information.

Students should spend a few minutes

studying each proposed solution, uTing

to mulersta_ how they each work.

Students should not try to undezstand

each implementation in detail but should

instead only try to get a high level

understanding of each. Smdems should

pay special attention to the interactions

among the rules, tying to understand

how the rules work together to solve the

problem. To assist with this, the
handouts include a rule interaction

diagram thax shows which rules are

affected by each rule. Specifically, these

diagrams are a directed graph where the

edges are drawn from one rule, say A, to

another rule, say B iff rule A modifies a
variable in the LHS condition of rule B.

Testing Good and Bad Designs

The first difference to point out in
the two different versions is that one of

them is more modularized. Although this

version has more rules overall, one need

only understand a few rules at a time

(i.e., one can focus on only one module

at a time). Also, this more modular

version can be more easily tested
because each module can be tested

separately. By compm_g the two rule

interaction diagrams, one can also see
that the more modular version has less

rule interaction; that is, the modules are

VII-17

02_7_2

02/07/92 09:.17AM

loosely coupled. Finally, the more
modular version has simpler LHS
conditions.For thesereasons,the more

moduIm" version should be easier to

understand; the students will be able to

judge this for themselves.

Testing modular well-designed ES

programs is generally easier and simpler

than testing badly designed ones. It is

possible to design ES prgorams so that

they have less complicated internal

inmractions; that is, one can design

"structured"ES programs.

The less modular version has a

problem in it. This problem is not easily

observable and most of the time, this

version will work correctly. One rule,

del-old-changes, which is used to delete

old facts that are no longer needed, has a

typo in it. "signal-changes" should have

been "_p_l-change". This error can be

seen by looking at the rule interaction

diagram and noting that

del old_changes is a affectsno other

rules (i.e., it doesn't do anything).This

problem could have easily been found

by using the CLIPS Cl_V tool and

deftemplates. The more modular version

uses deftemplates and thus many types

of errors such as typos can be detected

automatically.

A common objection raised against

the development of highly modular

programs is that they are less efficient.

That is, they may be easier to understand

but they execute flower. If this objection

is raised by a smdent, the imuucter can

quickly _llmb_t. it by simply pointing
out that the more modular TLC solution

executes sigzificanfly faster than the less

modular one. The mason is that although

the less modular TLC solution requires

fewer rule Kdngs, each rule firing takes

longer because each rule is more

complicated (i.e., the less modular

CLIPS vers/on requires a lot more

pattern matching). Therefore "simpler is

better,simpler is faster".

02/07/92

VII-18

02/07/92 09:17AM

"Exuert" Traffic Li2ht
ControUer Problem

For studying the V&V differences

associated with ES problems, the TLC

problem is not _ Instead, we

will use an expanded version of the TLC

problems which is as follows.

At certain th_es of the day, an

intersection becomes congested, the

electronic traffic light conUoUer

becomes inadequate and a policeman is
used to direct the uaffic. The same

policeman has been directing tra_c at

this intersection for a number of years

and there are much fewer complaints

from citizens about having to wait at this

intencsecfion (than there were several

years ago). It is now desirable to make

the electronic system "smarter" so k can

handle the same amount of flow as the

policeman and is also as fair as the

policeman (i.e., he doesn't force may one

direction to wait for a long time on the

other direction).

The new system w_l function as

before when franc is "light" and wW
switch to "smart mode" when the traffic

becomes heavy. In "smart mode", the

system will look at

• the length of traffic in each di_on

(new sensors win be insmned to

provide this information)

02/07/92

the number of people waiting to turn

left as opposed to going straight

(new _ w'al be installed to

indicate how many people are

waiting in the left mm lane)

• the speed of traffic going through the

intersection (new sensors will be

installed to provide this information)

Using this information, the system

wKl decide when to allow a street (north,

south, east, west) to either go straight,

turn left, or wait on another street.

Although this statement of the

problem is not sufficiently detailed

enough to develop a solution from, there

is some analysis that cart be done. One

can check for inconsistent requirements

and missing information. For example, if

the requirements said that the system

automatically decides when to switch to

smart mode and also said that there was

a switch to manually control the mode,

then these requirements are potem_y

inconsistent. And if the requirements

gated that traffic flow is a determining

factor but gave no indication that waffic

flow as an input then this would be

missing information.

From looking at this new problem

description, we can see that it has many

features of an ES problem. It is

automating a job that a human expert is

currently performing. It is much more

complicated than the conventional TI_

problem and it would be difficult to

VII-19

02/07/92 09:17AM

design an algoriflml to solve the

problem. It also contains some

subjective zequirements such as being

"fair".

Knowledge Acquisition Results

The statement of the new TIC

problem as it has been given so far does

not have enough information to develop

a solution flora directly. As with most

ES problems, the criteria for making the

decisions mandated in the requirements

must be obtained fi'om an expert. For

our proposes, we will assume that the

following is from initial knowledge

acquisition from the policeman.

the policeman walks a beat a few

blocks from the imemecfion and

when he hears several horn honks

close together, he goes to the

intersection to help dear the traffic

if the line is so long in any direction
that he can't see the end of it then he

lets those directions (including

turning left) go for about

minutes before changing

otherwise, if he lets each direction

go for about two minutes, except for

turning left which he allows for
about one minute

he lets the longest direction go about

half a minute longer than the other
directions

if the line waiting to ram left is small

when compared to the opposing
direction, he will skip them for one

cycle (i.e., let each other direction go

OI_,C more)

if the tine waitingto go s_aight_
small, compared to the _cular
direction, let it go for half a minute
less

if you can notice a car that has been

waiting for three cycles and has not

gone, let that direction go half a

minute longer (that line is just

moving slow;, this roughly

corresponds to less than 20 cars per

cycle for 3 cycles).

With this new information,

additional analysis can be done. In

addition to looking for conflicting

information, one should look to see if all

decisions mandated by the requirements
can be made fixan the criteria obtained

during knowledge aquisition; that is "is

the knowledge aquired sufficient tO

solve the problem ?" Ideally, one should

aquire operational scenarios, both
nominal and off-nominal (disaster)

scenarios, to aid in defining tests.

Problem Features

At this point, the student can study
the new TIC problem and think about
scenarios as well as inconsistencies and

missing information. A class discussion

of how well this problem fits the notion

0?/07/92

VII-20

02/07/92 09:17 AM

of an ES is also _,v_c,t,_ia_ Some

questi(ms that would be helpful in

ptomotiag cl_ discussion are:

• Is it a shallow or deep nulsoning

solution ?

• Would this be di_cult to solve with

conventional software ?

* Does it rely on human judgement ?

• Will it replace or augment a human

expert?

02/O7/92

,.___:_-._

VII-21

02/07/92 09:.17AM

Expert System Imnlementafion
V&V Techniaues

Overview

The purpose of this section is to

summarize several tedmiques for

verifying programs written in non-

procedur Lmguages.Thesetechniques
add_ss issues associated with how ESs

are implemented (and tiros will all be

verification tcch_lueS as opposed to
validation techniques). Although the
student will not be a master of these

techniques at the end of this section,

they win be able to begin applying them.
More importantly, they will be aware of

techniques thatdo exist and when each

one is applicable. References will be

given that explain each teclmique in
more detail

For each technique, we will briefly

describe the technique and then indicate

when the technique is applicable (it may

apply only for rule based systems and/or

may only be able to detect certain types

of errors). Most of these techniques are
difficult to apply without some type of

tool so we will discuss the availability of

supporting tools for each tecimique.

An importam part of the discussion

of each technique wal be an example of

how it could be applied to the TLC

problem. These exmnples serve to better

describe the technique and how it can be

used. The student should be encouraged

to pr_'_cc the mctmi__esby fm',.h_r
applying them to the TIC problem.

Rule Consistency Checking

The most difficult aspect of

verifying role-based programs is

verifying mle imeraction. This is
because of the potemially large amount

of interaction among rules. Most of the

interaction is probable expected but

there may also be some unexpected
interaction. Vezification should involve

looking at all intexactionto make sure

that it is intended and is correct but,

given the large amount of interaction,
this can be difficult.

Rule consistencyctzddng amunpts

to make this easier by identifying certain

types of rule interaction that are usaally

unexpected and indicate some type of

error. That is, they idmti_ bad or
anomalous types of rule inmmctions.

There are several major categories of

these anomalous types that we will
illustrate.

First, it should be noted that these

techniques are applicable only to rule

based systems. They also do not find

errors but only indications of possible

errors (i.e., not all anomalous rule

interactions are wrong). So a human w_
need to look at each anomalous rule

interaction to determine if it indicates an

error. Another important note is that it is

very time consuming to identify atl
anomalous rule interactions by hand;

02_7_2

VII-22

02/07/92 09:17 AM

some type of tool should be used.

Unfommately, there are few tools
available to do this and there are no

known commercial products.

More information on rule

consistency checking can be found in

references [1]and [2].

]RnleConsi_encv Ano_

There me two types of reachabRity
anomalies which are dead-end roles and

unreachable rules. Dead-end rules are

rules that do not affect any ocher rule.

Th_ is, the chain of h_=_ rew.hes
a dead-end z such a rule. An example of
a _ rule is the rule

"dd_old_cSmSes" in u_e short CLIPS
implemezm_iou to the _ problem.

This rule only affecm a fact called

"signaI_chmges" which is not

referenced by any other rule. So

del old changes can not affectany other

rule.This isan error;,the factthatshould

have been changed by del_old__mges

should have been "singalchange'. Itis

worthwhile to poim out thatthis error

was made when theshortCLIPS versiou

was initiallycreated and was actually

found by doing rule consistency

checking (thiscan be see_ in the rule

imeractiondiagmn-l_dom #4).

Another type of re_mbnity
anomaly is _le rules. An

unreachable rule is one that is not

affeo_ by my other rule. Th_ is,

chain of inferencing can not reach this

02/07/92

rule. For exmnple, if there was a rule

whose left hand side condition depended

on a fact called "signal_changed" then
that rule would be an umre_,hable rule.

That is because there is no such f_ct

cremed by any rule.

A cycle is a group of one or more

rules that (can) repeat. The rule

"updam_zime" is an example of a rule

_x_ats. In this case, the cycle is not

an error;, the rule is imm3ded to fire

repeatedly until a certain time is

reached. But in general, cycles are

po',en_ problem areas because they
could repeatendlessly(i.e.,be the rtde-

based equivalcmt of an endless loop).

There are two types of overlapping

rule anomalies. The first type is

redundam rules.These are rulesthatdo

some of the same things.For exnmple,

the following two rules are redundant.

set_long_timer:

if ti__ctmged or
signal.in_directiongreen

then

setlo_g...fimer

retractmedium_timer

retractshort_timer

retract_medium timer:

_tight_c_ed
then

retr_ medium timer

retractshort_timer

_m:... _ - ._:

VII-23

02/07/92 09:17 AM

These rules are redundm_ because

when light_chsnged is true, they both

aly,eml_ to retract the medium (and

shog) rimer. This could be m error,

dq_nding on how these mle_ are

implemented. They could be

implemented so that when

light changed, retract_medium timer
will fire and retract the medium and

short timers, preventing the
set long_timer rule from firing and

setting the long_timer. So if the

long_timer must always be set when

light_changed, the above rules are in

type of ov_ rule
anomaly is con_ctmg r_ Conflict_
roles are almost always in en'or. For

example, the fonowing two roles are

conflic_g.

set_long_timer:

if light_chmged or
signal.in_directiongreen

then

set long..timcr

setmedium_timer
set short_timer

retract_medimn_t/mer:

_f_t c_.ged
then

rewa__medimn_fime_

retract short_timer

These two rules me conflicting

becanse when fight_changed is wae, the

first rule will set the medium time_ while

the second rule will retract it. These two

actions (setting and retracting) are

conu_ctory.

All of the above errors could be

found by inspecting the rules in question

and seeing that they are wrong. For

example, one could see that, in the

previous example, set_long_timer

should not also set the short and medium

timexs. Doing rule consistency checking

is aa aid in finding en_rs that are missed

by simple inspection.

Finding all instances of role

anomalies in a large rule-base would

take a long time to do by hand so it

would be adventageous to use an

automated tool. However, if the rule-

base is modularized into small sets of

rules, it is not unreasonable to check for

several types of anomalies by drawing a

rule interaction graph. That is, by

drawing a directed graph, showing

which rules are affected by other rules.

Then, the following types of rule

anomalies can be seen directly in the

rule interaction graph.

02_7D2

VII-24

02/07/92 09:17 AM

_ _ tRu_ C) thamha_]_de tR_ O

Cy_

Data Consistency Checking

Data consistm_ checking kivolves

comparing the defin/tion of data/facts

with how the &n/facts are used. Th/s is

very similar to type checking in

conventional languages, such as Ada,

where one must declare a data type and

declare variables of dmt type before the

variable can be used. This allowsone to

find errors involving a misuse of a
variable.

Dam consistency checking is often

supported by tools that are provided with

the programming language used. For

example, CRSV, which is provided with

CLIPS, can find mmy types of data/fact

use errors such as the mispe/ling of the

"signal_change" fact in the rule

"clef_old_changes".This error could

have been found if "signal_change" were

d_laxed via a deftemplate.

More reformation on data

consistency checking can be found in

references [3], [4], and [5].

SensitivityAnalysis

Sensitivity analysis involves

analyzing the sensitivity of one data item

to other data items. Sensitivity analysis

can be used as a debugging technique or

can be used to increase the efficiency of

programs. It can also be used to help
construct test cases. Like other

tec iques, semiti analysiscan be
very tedious and t/me consuming if done

by hand. Unf_y, the only known

sensitivity analysis tool is still a research

prototype.

Sensitivity analysis is most

applicable to classification types of

problems instead of problems like the

traffic controller problem. So suppose,

instead of the TLC problem, we had the

problem of classifying the current state

of a soution to the TIC problem. That

is, given the value of all the variables

used in a TLC solution, dassh"y the

current state as being either S (only the
1

long_timer is running), S 2 (both the

short and medium timers are running
and the medium timer is not within 15

seconds of expiring), or S (both the
3

short and medium timers are running

0_7_

VII-25

02/07/92 09:17 AM

and the medium timer is within 15

seconds of expiring). If we considered

the sensitivity of each of the three outImt

states to the input patmneters (the

variables of the program being

analyzed), we can see that S is the
1

least sensitive because it depends only

on long timer running. Conversely,

statesS andS depend on both the
2 3

short and medium timers existing as we, ll

as how long the medium timer has been

running.

We could use this information about

the sensitivity of S to:
1

1. debug a problem involving no

OUtlmt when none of the timers are

rumins

2. see that it would be more efficiem to

check for the program being in state
S first (because the fewest

1

conditions need to be checked)

identify a set of tests to cover all

possible ways state S can be created
1

More information on sensitivity

analysis can be found in reference [6].

SWuctuml Testing

Stractural testing involves

identifying a set of test cases that will

"cover" all parts of the program.

"Covering" a rule means that the test has

caused the rule to fire. "Covering" a
fimme means that the test has cansed an

instance of the flame to be dynamically

create& "Covering" a frame demon

means that the test has caused that

demon to be invoked. By using these

new definitions of "coverage", structural

testing can be extended (fxom the

of CS) to non-_ languages.

That, is by defirdng coverage for the

type of knowledge base constructs used

in the ES, swacmral testing cau be

adapted for arty kind of ES language.

The purpose of structural test_ is

not to find errors directly but instead

only to help ensure that testing is or has

been done comprehensively. As with

other technics in this
section, structural testing can be tedious

and time consuming. Tools can only

partially help with this. Tools can be

used to measure test coverage but it is

germa'ally still up to a human tester to

create, ,xecutv, and zmdyzcd tim results
of test cases.

Structural testing of ESs can be more
difficult than for CS because ESs are

developed in a more imrafive way. Each

time the knowledge base is changed, test

coverage must be recalculated (to

measure the coverage of the newly

modified knowledge base) and tests

must be rerun. However, when used as a

part of regression testing, structural

testing (i.e., measuring test coverage)

can help one figure out which tests need

02/07/92

VII-26

02/07/92 09:.17 AM

to be reran and which may not need to

be to be renm. This can be done by

recording the coverage of each

previously run test case and comparing

this to the lmowledgo base
modifications. Each test case that

covered a portion of the knowledge base

that changed should be nmm. "lifts may

or may not be cost effective use of

structural testing. The cost of renmning

all test cases should be compared to the

cost of recalculating test coverage.

An important point about mucun_

testing that should be pointed om is that

the analysis involved in identifying test

cases to cover all parts of a knowledge

often does result directly in finding

errors (i.e., errors are found before

executing any tests). This is a

serendipitom benefit of muctu_ testing
that should not be overlooked.

bene_ seems to arise bezmse it

encourages programmers to:

t. look at their programs from a fresh

point of view (that of test coverage)

2. study their programs in more &taft

3. think about how their prognms will

execute under specific scenarios

More informatio_ on _actutfl

testing can be found in refenmce [7].

Specification.Directed Analysis

sp_-ificzi__i an_y_, like
structural testing, is an extension of a CS

O2/07/92

testing technique. It merely invovles

extending the notion of specification to

one that is compatiable with the

constructs of non-procedural languges.

Recall that a specification is an

assertion about a part of a program and

can be thought of as a specific
n_luitement that the program is
to comply. Another way of thinking

about a specification is that it is a

requirement that the program designer

places on the program. A key difference

between specifications and typical

requirements is that a spec/cation is a

precise and detailed assertion about how

a program is expected to behave and

there is usually a rigorous procedure that

canbe usedm show that aprogram

satisfies a specification.

Extending specification-directed

analysis to programs written in non-

procedural languages involves

identifying for each new non-procedural

consm_ct, at least one format for

recording specifications, and at least one

technique for showing that a program

satisfies a specification written in this

fonnat. Because there can be a variety of

specification formats and "proof

techniques", even for a single type of

non-procedural construct like a forward

chaining rule, specification-directed

analyis is really a family of verification

techniques.

There are no known commercial

tools that support specification-directed

VII-27

02/07D2 09:.17 AM

analysis for any non-procedural
language. Bin, unlike the other
techniques discussed in ttxis section,
specification-directed analyis can be
done by hand (i.e., it is not as

overwhelmingly tedious as the other
techniques).

One example of specifying and
proving an assertion for the TLC
problem can be seen by looking at the
longer CLIPS solution to the TLC
problem. In the timer module, there is an
assertion that the timer names are

unique. Also in this module, there is a
rule called "timer_name-conflict" that
can be shown to fire at the end of each

timer cycle to remove duplicately named
timers. So, informally, this demcmsuaxes
that timer names are unique (at least at
the end of each timer cycle).

The above example brings up an
important point with respect to

specification_i_,ected analysis -
informality vs. formality. Another name
for specification-directed analysis is
"formal methods'. This is because

specification-directed analysis is widely
advocated as a being rigorously done
using formal mathematical methods.
And because many think that rigorous
proofs about specifications using formal
mathematical techniques are very very
expensive to generate, specification-
dixected analysis is also often thongl_ to
be very expensive. However, as the
above example illuswates, specification-
directed analysis can be done very

informally without an rigorous use of
mathematics. So specification-directed
analysis need not be very expensinve or

difficult to apply. In fact, some believe
that this fam_y of tedmiques will
eventually be used almost exclusively

(i.e., will eliminate the need for the other

techniques).

There are some commonly used
types of specificatinns that can be

adapted for use in non-procedural
progrmus. One such type of
specification is data value _.

T_ is sim_r to data consistency
analysis exoept that in addizm to ._
defining the type of the variable, a
conswaint on its value is also given. The

constraint may be just a simple list of
posm'ble values or a complex condition
that depends on the values of other
variables. We have already seen one
example of this type of constraint and
that was the unique name consu-aint on
timer names in the Tuner module of the

longer CLIPS solution to the TLC

problem.

Another type of specification is the
use of l_econdifims and postconditions.
For a given action, a precondition
_ a condition that must be true in
order for the action to be performed
whi3e the pcetcondizion specifies the
condition that should be true after the

action is performed. This type of
specification can be adapted for use in
forward chaining rides that perform
some action. The condition part of a

02/07/92

VH-28

02/07/92 09:.17 AM

such a ru/e already serves the pm'/x>se of

the precondition in that the condition
must be true before the rule fires. What

is missing is the postcondifion which
states what shottld be true after the role

fires. By adding such a m
rules, one can not only check that

individualtales arecorrea
that the rule firing win result in the

poszcondidon being true) but c_ also be
usedmcheckflze _on_

rules. It helps with interaction analysis

because the _fion of one rule

can be compared m the lefz _ side

condition of _ rule m more deafly

see if one rule firing will lead m the

firing of mother rule.

Preconditions and postcondititms can

also be used in verifying the use of

demons and other types of triggered

functions. By associatinga
with a demon, one can more easily

compare the assumptions that a demon

makes wi_ the rest of the sysumz. For

example, if we had a fimne-based

soluticm to the TIC problem which had

a demon that suppled the signal data

(Le., when a waiting or appttmching

signal was detected), we could define a

precondition of "no signals unpmcess_"

and a posu:ondkion of "exactly one

signal'. Together, these

would indicate that one signal should be

processed before the next one is read.

Most knowledge bases include some

functions. That is, they are not all .just

doing logical inference with an

occasional _ action. For example,

the longer TLC CLIPS solution has a

function m change the fight. This

function can be specified with a

precondition and postcondition pair as
follows:

precondition: green-light= NS or EW

postcondition: green-fight = NS or
EW

and green-liOt/=-green-Zigbt'

Where "green-lighf" denotes the

green-fight variables value before the

change-light fanction was invoked.

Together, these indicate that the change-

light switches the fight fi'om NS to EW

and from EW to NS. This function could

be more easily specified with an abstract

functional specification. Abstract

functional specifie_ons are basically

very high level functional programs so

they are generally more natural for

programmers m use. An abm'acz

functional specification for the change-

signal function is:

direction:= NS if d/rection=EW

EW ff direction=NS

Two of the case studies (#I and #2)

are more complete examples of

specificafion-dixec_ appmac_ m the

development and verification of ESs.

More infonn_on on specification-

directed analysis can be found in

references[8], and [9].

:,,"_._-_,

0 7/92

VII-29

02/07/92 09:I7 AM

E;m_err System Problem V&V

Overview

In the previous section, we discussed

verification techniques that addressed

implementation issues of ESs. Because

those techniques were implem_atation

oriented, they were all clear box

teclmiques. In this section, we will

discuss techniques that address issues

associated with ES types of problems.

Because these techniques are problem

oriented, they w_l be black box

techniques.

The use of these techniques will not
depend on how the solution is "coded',

in what language it is implemented, how

it is designed, or with what nmsoning

strategies are used. In discussing these
techniques, we will only be concerned
with whether or not the solution

adequately solves the problem,

satisfying all conectness objectives
(stated in some form of requirements).
We will also be concerned with whether

Or not the system is based on a conect

set of knowledge. One could argue that

as long as the system adequately solves

the problem, it does not matter w_

or not the system is based on conrect

knowledge. For some purposes this may

be true but for most _ it will be a

dangerous approach. A system based on

inconect knowledge could

problems in several ways.

l.The system may be a source of

knowledge in the furore.

2.In the future, a maintainer may
notice a difference between the

knowledge used in the system

(which is incorrect) and the behavior

of the system (which is correct) and

change the bahavior of the system to

be compatible with the knowledge

(so that it no longer works correctly).

3. Future maimaine_ will have

difficulty und_a_ara_g the system;

they may be confused by the

incorrect knowledge.

So we will assume that it is

important whether or not the system is

based on correct knowledge.

Knowledge Acquisition

Correctness Checking

As just mentioned, it is important to

check that the system is based on conect

imowledge. It is also important to check

for correct knowledge as early as

possible during development. This is

consistent with the goal of finding errors

as early as possible. The earliest point in

which incorrect knowledge can be

identified is when it is being acquired

from an expert.

Knowledge acquistion correctness

checking involves chedfing consistency

02/07/92

VII-30

02/U7/92 09.-17 AM

and ccmpleumess of the knowledge

being supplied by an expert. It does not

necessarily involve checking the

accuracy of the expert's knowledge; this

would be difficult for the ES devdoper

who is often not an expert in the subject

domain or for an expmx who is

developing a system based on is own

knowledge. This is similffir to

requirements _ysis where the goal is
not to judge whether the user really

needs the capabilities stated in the

requinnents but instead involves looking

for inconsistencies and inccmpletenem

which would lead to difficulty in

developing a system that satisfies the

_ems.

Inconsistencies to be looked for

include the following types of problems.

1.Contradictory statements such as

terms being defined multiple times

and in different ways

2. Redundant statements such as tenns

being defined multiple times in

similar ways

3. Conflictinggoalsor msumptiom

Types of incompleteness to be

looked for include the following types of

problems.

I. Terms referenced but not defined

2.Goals with no tasks defined for

accomplishing them

3. Tasks defined which do not attempt

to accomplish any defined goal

4.Situations which may arise but for

which no goal or task is defined

It is important to note that incorrect

knowledge identified during knowledge

acquisition does not mean that the

experts knowledge is wrong and it

would be very prudent for the

knowledge engineer to make this very

clear to the expert. Instead, incorrect

knowledge identified during knowledge

acquisiticm is most often an indication of

an error of communication, some type of

misunderstanding between the

knowledge engineer and the domain

expert.

More information on knowledge

acquisition cotrecmess _g can be

found in reference [10].

Incorrect knowledge can be most

easily identified (and prevented) by

_-presentingthe knowledge in a form

that is easily _le to both the

expert and the knowledge engineer.

Although a complete survey of

knowledge representations is beyond the

scope of this course, the following are
some common ones that can be used.

• Decision tables: these are useful for

identifying incomplemess among

goals, tasks, and situations. A

decision table may list goals vs. tasks

or simat/ons vs. tasks. For example,

0_7_

VII-31

02/07/92 09:17 AM

the state diAeVam for the TLC

problem could be xeptesemed as a

decision table by having the coltmms

in the table being states and the rows

being diffezem situations. The

elements placed in each row/column

position would be the state to be

transitioned into, given the system is

cttrrenfly in the state represented by
the column and the situation

zepresemed by the row has occane_

References [14] and [15] give
additional information on the use of

decision tables.

Concept trees or maps: these are

use_ for identifymg inconsistencies

in the definition of concept terms.
Terms can be defined in a

_cafion hierarchy (a tree) or in

a type of Venn diagnnn wbere

similar terms are drawn closer

together than di_imilar terms (a

concept map). For example, the

terms associatedwith signalsin the

TLC problem could be mlxesented

in a classificationhierarcyas shown

below.

Reference [12] contains additional

infermzion on concept trees and

maps.

K-Trees: these are useful for

identifying incompleteness and
inconsistencies in heuristics

acquired. K-Trees are similar to
decision tables and clarification

hierarchies. K-Trees are n-ary trees

where each non-leaf node n_r_er_
a condition and the leaf nodes

represent the consequenc_ (some

final decision). Tracing a path from

the root node to any leaf idcntiiies
all the condificms that must be true in

order for the consequence to be true.

K-Trees are usually better than

simple roles when analyzing

heur_cs. For example, conditions

and actions for the TLC problem

could be represented as shown
below.

:,_---_._

02407/92

VII-32

02/07/92 09:17AM

root - updmtz=

/ ex; red

ernernote eO L

Minimum Competency Testing

ul n mm • • •

M_my types of human experts are

certified by giving them ,.i.i,..m
Reference [13] contains additional competency tests. Examples included

information on K-Trees. medical doctors, accomtta_, real estate

brokers, professional _, and

• Task timelines: These are useful for Space Shuttle flight controllm's. So it is

analyzing expected seqeetming and natural to _ developing similar

timing of tasks to be performed, types of competency tests for ESs,

These are most often used for especiany when en ES is to serve in tbe

zepresenting high level problem same role as an expert who had to pass a

solving (i.e., the flow of major tasks minimum competency test (e.g.,

involved in the problem solving requiring an ES for Space Shuttle flight

approach). For example, the overall control pass the same tests that a human

TLC problem solving behavior could flight controller had to pass).

be rclatsemed as shown below.

Reference [12] contains additional In two ways, minim= competency

L,fformation on task timelin_ and testing is shnilar to statistical testing.

task analysis. The first way is that most lmman expert
certification tests do not require perfect

100% accuracy. That is, hmnan expem

can fail to correctly answer some of the

test qu_tiotm and still pass the test. But

if they answer a certain petuenmge

correctly, then they are "good enough";

that is, they are not perfect but they have

VII-33

02/07/92

02/07/92 09:17 AM

the requited minimal level of

competency. The second way that

mum competency testing is similar

to statisti_ testing is that minimal

competency tests are often reptesen_ve
of the types of problems that the expert

w't-ll encoumer "on the job"; that is, they

are typical olxaational scenarios.

A good exercise for class discussion

at this point is the fotiowing. Assume

that the TLC problem isto be solved by

a human traffic controller (a tra_c cop).

What are some of the questions that

would be on the uaffg cotm_llers

certification exam (i.e., his min_al

competency test) ?

More information on minimum

competency testing can be fotmd in

reference [11].

Disaster Testing

As when validating most systems,

validating ESs often involves spending

more time testing situations that should

never occur than is spent testing

situations that occar routinely. Tha_ is

becatks¢ con'eclne_ of the system is

sometimes most important when it is

dealing with disaster or potential disaster
sinmfions which should rarely if ever

occur. And because errors, especially

incompleteness errms, are more often

found in parts of the system which deal

with disasters (this seems to be due to

the complexity of disaster situations).

Disaster information (information

associated with recognizing disasters and

potential disasters, and with preventing

them or recovering fi_m them) is

important for V&V of ESs. In addition

to the importance of testing that ESs

correctly react to diasaster and near

disaster situations, disaster information

is needed to check for completeness of

the systenm (i.e., to make rare all

situations are properly covered). It is

also useful for exploring how well the

system understands what situations it

does and does not know how to handle.

This is because disaster sitations can get

complicated and require much more

knowledge and reasoning than the ES

can provide. Thus, disaster situations are

useful for testing whether the ES can

give up and declare that it can not

(safely) handle a situation.

In addition to using disaster

information for generating test cases, it

can also be carried through the design.

That is, the system can be verified to

comply with disaster requiremeam

during its development. This is most

conveniently done using specification-

directed analys_ becmlse disaster
information is typically most

conveniently _aued as a constraint

specification.

Human experts are often very good

at quickly recognizing potentially

disastrous situations and preventing

disasters from occurring. Although some

02/O7/92

VII-34

02/07/92 09:17 AM

enjoy reconnting near diasasters

they have encountered in the past (so

catled "war stories"), experts often

sometimes neglect to discuss disaster

situations; sometimes situations that

should never occur are taken as

"common sense". Because of the

importance of disaster information for

V&V of ESs, the knowledge engineer

should pursue acquiring disaster

_ozmafion _ the expert

knowledge acquisition.

An obvious example of a disaster

simalion for the TIC problem is that the

light should never be green in both

directions. This would allow for traffic

in both directions to collide.

ExpertReview

Generally, the best people to check

correctness are the experts themselves.

Becanse _ already _ the

problem to be solved, the knowledge

needed to solve the problem and may

already know how to solve the problem

manually, the only thing they may be

missing is an _g of the ES

solution. So the key to expert review is

representing the review material so thax

an expert can (easily) understand it.

Usually, the expert can easily
understand test case scenarios and test

results.So they almost always can and

should be checked by the expert. Experts

should alsobe involved in checking the

correctness of acquired knowledge.

Some form of the knowledge acquired

fzom them or another expert should be

given back to them for review. Many of

the knowledge representations inch as

concept trees and K-Trees are easily

unders_xlable by an expert once they

are given a little training in the

representatio_

And with a little extra work to train

the expert and/or re-represent the

solution in a more natural form (e.g.,

nawative English), the expert can check

the system design. They can check the

overall problem solving approach of the

design (e.g., the major tasks and the

flow between tasks). Sometimes they
can even check the details of the

implementation to ensure that the

acquired knowledge was correctly

interpreted during implementation of the

system.

Reference [12] contains addition

infonnations on and suggestions for the

use of expert reviews.

02/07/92

VII-35

02/07/92 09:. 17 AM

This section has discussed the

diffeamccs between ESs and CS,

pointing out that the diffcttaccs can be

grouped into two categories.

1.Differences due to how ESs axe

usually implememed.

differences are due to the use of non-

procedural languages.

2.Differences due to the types of

problems that ESs are usually built

to solve.

To illustrate the first category of

differences, two approadms to solving

the TIC problem were presented, one

approach was conventional (written in

Ada) and the othcx approach used a non-

procedural language (CLIPS).

To illustrate the second categoory of

differences, a new "more ES-ish"

version of the TIC problem was

presented and was compared to the more

conventional TLC problem.

Finally, a set of ES V&V techniques
were summ_ Some of the

techniques addlessed the ES

implementation differences while other

techniques addresssed the F._ problem

diff_erences.

02/07/92

VII-36

02/07/92 09:17 AM

References

Nguyen, T.A., Perkins,

W.A., Laffey, T.J.,
Pecora, D.,

"Knowledge Base
Verification', AI

Magazine, Summer,
1987

2. Nazareth, D.L., "An

Analysis of Techniques
for Verification of

Logical Correctness in
Rule-Based Systems",
Phd. dissertation, Case
Westem Reserve

University, 1988

e NASNJSC Software

Technology Branch,
CLIPS Reference

Manual, Voll III,
Section 2

Section 2 is the

description of the

capabilities of CRSV

4. Booch, G., "Software

Engineering with Ada",

02/0//92

Benjamin/Cummings,
1983

Chapter 8 discusses

type checking in Ada
which is a kind of data

consistency checking

technique.

5. Rkes, R., Kehler, T.,
"The Role of Frame-

Based Representation

in Reasoning",
Communications of the

ACM, Sept., 1985

This is a general
discussion of frames

and their use in rule-

based programming. It
includes some

discussion on

necessary and
suffident conditions for

classifying a frame

instance as belonging
to a certain class. This

type of necessary and
sufficient condition

checking ensures a

V'lI-37

02/D7/92 09:17 AM

level of data

consistency.

6. Franklin, W.R., Bansal,

R., Gilbert, E., Shroff,

G., "Debugging and

Tracing Expert

Systems, Proceedings

of the Twenty-first
Annual Hawaii

International

Conference on System
Sciences, 1988

7. Miller, L.A., "Dynamic

Testing of Knowledge

Based Systems Using

the Heuristic Testing

Approach', Expert

Systems with

Applications, Vol. 1,
No. 3, 1990

8. "Designing a Solution
for the Traffic Light

Problem Using Terms,

Operators, and
Productions" - This is

the first case study in
the Case Studies

section.

02/07/92

= Rushby, J., Crow, J.,
"Evaluation of an

Expert system for Fault
Detection, Isolation,

and Recovery in the

Manned Maneuvering

Unit", Final Report for
NASA contract NAS1-

182226

(NASNLANGLEY)

10. Marcus, S., "SALT,

A Knowledge

Acquisition Tool That

Checks and Helps Test

a Knowledge Base",
1988 AAAI Workshop

on Verification,

Validation, and Testing

of Knowledge-Based

Systems

11 • "Quality Measures
and Assurance for AI

Software', This is the
last reference in the
references section of

this workshop

VII-38

02/07/92 09:17AM

pp.74-79 includes a
discussion of minimum

competency testing

12. McGraw, K.L.,

Harbison-Briggs, K.,

"Knowledge

Acquisition Principles
and Guidelines',

Prentice Hall, 1989

pp. 312-323 includes a

discussion of using
experts to aid in review

and testing of an

expert system

pp. 135-151 discusses

concept maps (concept
distionaries) and other

concept organization
techniques

pp. 173-178 discusses
task timelines and

other task analysis
topics

13. Kemam, G., Koltun,

A., Schwartz, E.,

"Programming ESs at

02/07/92

the K-Tree Level',

Sigart Newsletter, July,
1989, ACM Press

14. Montalbano, M.,

"Decision Tables',
Science Research

Associates, 1974

15. Weiss, S.M.,

Kulikowski, C.A., "A
Practical Guide to

Designing Expert

Systems', Rowman &
Allanheld, 1984

pp. 118-123 discusses
decision tables in the

context of expert
systems

Y1]-39

Expert Systems V&V Guidelines Workshop

Part 3: C.midel/nes

By Scott W. French and David O. Hamilton

This section _ part of the _xpert Sy_en_ V&V worlcshop.It presents a set of

guidelines for V&V of expert systems. These guidelines are based on the materials

presented in Parts 1 and 2 of this workshop.

February 1992 I

Table of Conten

Introduction .. 3

Overview .. 3

Common Software Misperceptions ... 4

Software in General ... 4

Expert Systen_AI in Particular $

Implications for Guidelines 7

Overview 7

Conventional Validation Implications 7

Conventional Verification Implications :................ 9

General Expert System V&V hnplications_ 10

Expert System Validation Implications 11

Expert System Verification Implications II

Other Implications _................... 12

Guidelines ... 14

Overview .. 14

Project Management Guidelines 14

Gu /eUues...
Requirements Guidelines 16

Design Gnidelline_-..___._ : 16

General Guidelines 16

V&V Technique Guidelines 17

Recommended Approach .. 19

Discussion .. 22

Exercise ... 23

Introduction

Goa/s

The goal of the workshop is to equip

the students with the knowledge

necessary to develop and implement an

overall V&V approach for the ES they

are currently working on or the very

next ES that they develop. That is, the

student should be able to leave this

course and begin to apply all the

material that has been presented. In

order for the students to be able to do

this, they will need to know not only

about ES V&V techniques but also

when to apply the various techniques

and how to combine different techniques

into an overall V&V approach.

The goal of this final section is to

provide a set of guidelines on when and

how to apply the various techniques. To

be most useful, these guidelines are

formatted into a step-by-step procedure.

Specifically, the goals for the student

are to:

I. understand the guidelines, including

the rationale for the guidelines

2.understand how to combine the ES

V&V guidelines with conventional

sofrware(CS) V&V guidelines(That

is, the student should, be able to

develop a combined V&V approach

for systems that include CS as well

as ESs)

3. understand how to tailor the

guildelines for differem types of ESs

(That is, the student should be able

to identify specific characteristics of

their particiar ES and tailor the

guidelines to fit these
charactez_cs.)

Overview

Before beginning the discussion of

guidelines,some general
are reviewed. These include

misconceptions about software in

general in addidon to expert systems.

The purpose of covering these

misconceptions is to create the proper

mind-set for discussing the guidelines

and begin motivating the students so

they wilt be more receptive to the

guidelines.

The approach used to presenting the

guidelines is motivational. Buikiing on

the mind-set created by discussing the
misconceptions, a set of conclusions are

made from the material in parts 1 and 2

of this wodmhop, conclusionson what
can and should be done in the V&V of

F.Ss. The conclusions of these inferences

lead directly into the general guidelines.

The guidelines are simply listed and

described. Because they have been

4

02/07/92
PRECEDING PAGE BLANK NOT FILMED

motivated by previous discussion, they
should not need a lot of explanation.

The final discussion of tailoring the

guidelines is, in many ways, the most

important discussion of the wockshop. It

is where an the mamial _ is

brought together into a format that the

students should try to follow when they

remm to their jobs following this
workshop.

0_7_

5

 ommon Software Rapid prototyping is becoming a

Miseonceptiom frequ tly approach,

Software in General

A naive view of software

development is that once the only end

product is the executable software. But

to understand how to use the software,

some type of user's, reference, and/or

training material must also be supplied.

Also, software rarely remains unchanged

after its first release but instead is

continually updated and revised many

times. In order for maimainms to safely

and effectively change the software,

scene type of maimenmce infmmation

must be provided. Finally, because each

change to the software n_aires
reverification and xevalida_n of the

entire system (not just the changes

made), V&V work produczs such as test

cases must be preserved to for
revertfication arid revalidatic_

It has also been mggested I that the

documentation be organized so that it

appears that fl_e system was devdoped in

an ideally systematic way. That is, by

looldng at the documentation, it appears

that the system was developed by

perfectly following a particular

development methodology (a "rational

design process').

_ially for expert systems. To take

full advantage of the prototype, people

often simply continue developing the

prototype, adding capabilities and

performing V&V, and make the

prototype into the product/operational

system. However, this approach is

usually a misguhied one. Prototypes are

almost always built as quickly and

cheaply as possible, taking shortcum

whenever possible and using such a ad-

hoc system as the foundation for a long

term operational system can lead to

many problems. Another problem

regarding evolving from a prototype is
more subtle but somewhat mote

impoxtam. This problem is the

assumption that a prototype of a piece of

the problem win scale up to a solution to

the entire problem2, 3. This is a

particular problem for ESs because one

can sometimes solve a portion of the

problem very easily using some of the

powerful non-procedtw_ languages but

run into extreme difficulty solving all

aspects of the problem. The leap into a

fidl devdopmmt effort based on the

success of a small prototype has been the

cause of more than one F_.S project
failure.

As discttssed in part 2, formal

methods (specification-directed analysis)

are widely considered to be impractical

6

02/07/92

for V&V of most software becanse they

are too _e and _t to apply.

Anthony Hall9 lists seven

misconceptions about the use of formal

methods (too expensive, too difficult,

etc.). Theze is a lot of confusion about

this subject and a lot of controversy.

Without getting sidetracked into the

esoterics of program proving, m

important point to bring up is f_

vs. rigor. One dictionary definition of
formal is "based on conventional forum

and rules" and a definition of rigor is

"suict precision - exactness" (both are
from W_'s New Collegiate

Dictionary). It is possible to construct

rigorous informal arguments about

programs, ones that strive for inecism

but are not conmucted using the

convemion and form of symbolic logic

notation. An mmmple was given in pan

2 concerning unique running of tining.

We were able to precisely show that

timer names must be unique at the end

of each time cycle but we only

constracted an informal rumu_ language

argume_L However, it is still helpfid to

formal m'g_a_ts so one

avoid some common logical pitfalls and

generally do a better job of

rigorous arguments.

Another misconception at_outformal
methods is that they are all about

proving that programs are "correct'.

There are two problems behind this

misconception. One problem is in

defining con_._-mess; we have to know

whaz "correcmess" for a certain program

means befoxe we can even begin to think
about proving correctness. And as we

have seen in part 1 (pieces of the
verification puzzle), there are many
different forms of con'ectness and some

of them are quite open ended. So we can

not even begin to think about proving
complete conectness of a program.

Instead we are limited to proving certain

properties about programs (e.g., unique

timer names). Mother problem is that
some forms of correctness such as user-

imerface correctness do not lend

themselves to rigorous arguments,
formal or informal. But once we know

what we can and can not justify through
the use of formal methods and use

formal methods for what they do best,

they can be very powerful tools,

Expert SystemslAl in Par6¢ular

ES technology is often thought of as

being some magical new set of tools for

bm'ldin 8 intelIigont software quickly and

easily. In reality, one spends a lot of
time and effort to consm_ct software that

is quite unintelligent, though highly
useful. Part of the xeason for this

misconception is that non-_

languages can be used to quickly solve

some difficult looking problems.

Unfortunately, real expert systems must

incorporate a lot of knowledge that is

often difficult to aquire and must be

O2/O7/92

developed and tested as any other type

of software. Roger Schank, a well

known AI researcher who has spent a lot

of trying to build real-world intelligent

programs has summarized this concisely

by saying "AI entails massive software

engineering Software engineering is

harder than you think: I can not

emphasize strongly enough how true this

statement is. "4.

Another ES misconception is that

they are "aft-or-nothing"; something is

either an expert system or not an expert

system. In part 2 of this worshop, we
have discussed some characterimcs of

expert systems and pointed out that not

all expert systems have an of the

characcerL_ics. This might lead one into
trying to decide whether or not

something is an ES. As mentioned

earlier in the workshop, it is better to

just look for ES _ mad not

worry about whether or not the overall

system is really an ES or not. It is

important to note that one must look for

all characteristics and not just the easily

recognized ones. For example, one
should not assume a system does not

have any ES characteristics just because

it is wrinen in a conventional procedural

programming language. Likewise, one

should not assume that a system has all

the ES characteristics simply because it

was wriuen in a non-procedural ES

language. Finally, it should not be

expected that all the parts of a system,

especially a large embedded system,

consistently share chamcter_cs. Instead

there may be parts that have some ES

characteristics, other parts that have

other ES characteristics, and some parts
with no ES characteristics at all.

A misconception about ESs that is

important from a V&V point of view is

whether or not they can ever be trusted.

Although it has been suggested that ESs

are inherently unreliable, and even

unpredictable, because they are based on

heuristic information, it is imponsm to

remember that ESs are still computer

programs executing in a deterministic

computer. Therefore they are
predictable; they can be analyzed and

predictions made as to whether they will

operate as desired or not as desired. The

heuristics upon which an ES is based can

also be analyzed and certain pmI_rties
about the heuristics can be made and

proven. Most importantly, one can

determine, with a small degree of

uncertainty, whether or not an ES will

be safe to use or not.

An ES is more than just a non-

procedural program; it has more
characteristics than that. So there is

much more to learning about ESs than

just learning ES shells (i.e., ES

languages and their development

environments). And to V&V ESs, it is

best to have a good understanding of

ESs. To fully understand ESs, one needs

02/07/92

to understand _ forms of knowledge

c many fmms of reasoning

strate_i_, how to _ knowledge

fxom an expcm, and how to engineer

softwme. The most _ropria_ form of

md _L_ing m-a_

should be used for the problem at b._nd

and using the right form makes analysis

of the sysmn much easier. Also, it is

good to understand and be prepared for

common problems encountered in

knowledge acquishion so that bad,

incomplete, or poorly organized

knowledge is not used as a basis for

and = YmS the system.
Finally, since a large part of building

ES is basic software engineering, a good

needed to build and _ ESs.

Because so much knowledge .is needed

to build ESs, two types of people are

sometimes involved in the development,

doma/n andsystemengmee .
Dommn ezz_m_ are more fiunfliar

with the subject domain arid how to

acquire and represent knowledge.

System engineers are more familiar with

the computer aspects of ESs inch m

non-wocedu_ lsnguages arid software

engineering.

02/O7/92

9

I aolications for Guidelines

Overview

So far, a lot of foundation

information has been discussed,

including key V&V ideas, conventional

V&V techniques, ES characteristics, ES

V&V issues, ES V&V t¢chniqucs, and

some common related misconceptions.
Most of the ideas have been ilht,mated

using a single problem, the Traffic Light

Controller (TLC) problem.

Based on all this information and

ideas, a set of conclusiom can reached

about what one should consider when

doing V&V of F_,3s. And a set of

straightforward guidelines can be
generated that address the
considerations. We will follow this

approach in this section by first listing

all the key ideas that have been

discussed so far. Under each key ide_
we will list a set of implicatiom that

directly follow from the key idea. These

implications could be about some design

or requiements information needed for

V&V, a development approach tim

would simplify V&V, when a certain

technique would or wouldn't apply, or a

general consideration for managing the

V&V process. Most of these

implications may seem somewhat trivial

but they are all very important

considerations and should not be

forgotten.

Continuing the basic approach, next

a set of guidelines w_l be listed. These

guidelines based on the implications.

That is, will be suggested approaches to

con_tingandusing informationneeded
for V&V, determining the fight set of

V&V techniques to use, and

planning/managing theV&V process.

Finally, a straightforward step-by-

step approach to V&V of ESs is

discussed. This high level approach

makes use of all the suggestions (Le.,

guidelines) previously Listed and
includes steps for identifying key ES

characteristics and tailoring the V&V

approach based on the characteristics
identified.

Conventional Vzflidaaon

Implications

The first key idea is what is meant

by V&V. Validation can be loosely

defined as uying to answer the question

"am I building the right product". An

obvious implic_itionof this definition is

that in order to pcrfonn validation one
must be able to determine when

something is the right product or not.

That is, one needs to know or at least

have a very good idea of what the

user/customer wants. And ideally this

should be stated early in the

O2/07/92

10

developmem process. This statement of

what is desired, i.e. what the dght

product is or is not, is called

requirements. If there is sufficient time

to do so, it would be good to read t_e

• following poem to the class which will

give emphasis to this very key
consideratiom

Twas the NiLHht before Crisis

Twas the night before crisis,

and ane_ough thehouse,
not a program was working,
not even a browse.

The programmers were wrung out,

tOO mindless to care,

knowing chances of delivery

hadn't a prayex.

The users were nestled

all mug in their beds,
while visions of windows

danced in their heads.

When out in the lobby

there arose such a clatter,

that I sprung out of bed
to see what was the matter.

And what to my wondering

eyes should appear,

but aSuperProgrammer,
oblivious to fear.

More rapid than eagles,

his programs they came,
and he whistled and shouted

and called them by name.

On__ OnA_
OnIn_ ! On l_le_ !

On Fathor ! On Closing !

On Functions Complete l

His eyes were glazed over,

his fingers were lean,

from weekends and nights
in front of a screen.

A wink of his eye,

and a twist ofhis head,

soon gave me to know

I had nothing to dread.

He spoke not a word,

but when swaight to his work,

taming desires into code,

then turned with a jerk,

And laying his finger

on the ENTER key,

the system came up,

and wozked perfectly.

Theupdates,updatec_
the deletes, they deleted;

theinquir_, inqui_:
and the closing completed.

He tested each whistle,

he tested each bell,

with nary a re-boot,

I'__ I
-..,., .--

II

02/07/92

andall had gone well

The system was finisl_,

the tests were concluded,

the client's last wishes

were even included !

The user smiled and then gasped

at what he had seen,

"It's just what I asked for,
but it's not what I need."

- Anonymous

The moral to this story is to try not

base the system on a loose informal

indication of what the user/customer

wants. Sufficient time should be spent

validating requitemenm to make sure

they are what the customer/user wants

and are not just what was asked for.

Recall that there are many different

pieces to the V&V puzzle. There are
different kinds of correctness that each

need to be considered. One must know

what types of co_ are most

important. At a minimum, one must

know whether or not the system will

sa_fy the user'sneeds.

Another part of the verification

puzzle is completeness and consistency.

Once one understands the Ftoblem to be

solved and what the system is expected

to do, they should m_tlyr_ rids

understanding, checking for inconsistent

statements and signs of missing

information.

An important implication of the

verification puzzle key idea is that owe

all the pieces to the puzzle are known,

they must all be fit together. That is,

once one has identified all the

correctness considerations and

developed a complem and consistent

picture of the problem to be solved, he

or she must develop a V&V approach to

address the type of problem and
con'cctnessconsiderations.

Recall that validation is based on a

black-box view of the system. That is,

the tester does not look inside the system

but only bases success or failure on

observable behavior of the system. This

key idea impli_ that, in order to

perform validation, one must know what

is correct behavior. A stmdant way of

describing expected behavior is via

stimulus/respome pairs. That is, one
needs to know more than what

knowledge to base the system upon; all

the stimuli and associated responses

must also be identified.

Recall that a _ way of

organizing stimul_ pairs is by

creating operations scenarios. Each

scenario is a series of _imulus inputs to

the system along with expected

responses from the system. Thus, ff

users can describe how they expect to

02/07/92

12

use the system, the knowledge mgineer

can extract stimulm/response pairs from
these descfipdons which can be used to

create validation tests. One good way of
helping the user generate the scenarios is
via prototyping. A knowledge engineer
can get operational scenarios by
observing users using a prototype as
they would expect to use the operational
system. Prototypes make it easier for
users to visualize how they will use the
eventual system and knowledge
engineers can better understand the

All of the validation implications can
be summarized in one word -

reqsdremcm_. Requirements should
contain information about an the
relevant forms of correctness and how

the sylm is intended to be used.
Requirements should be thoroughly
analyzed for consistency and
completeness. Prototyping is a useful
method for early analysis of
xequkements.

Conventional Verification
Implications

Recall that comprehensive validation

of any complex system is practically
im_'ble. However, by dividing the
system into managable pieces and by
looking inside the system (i.e., doing
verification), one check for co_

less expensively and more
comprehensively. The obvious

implication of this key idea is that
verification greatly reduces the cost
testing a system. But verification adds
new pieces to the V&V puzzle, namely

when and where to check what types of
_S.

Verification can loosely be defined

as trying to answer the question "am I
building the system fight ?" It directly
follows from this definition that to do

verification, one must understand how

the system is being built and how it
shou/d be built. How the system is being
built can be seen by looking inside the

sysmm at various points during
develoixnent. How the system should be

built needs to be docmnented in some

type of system design.

Recall that a key aid to verification
is modulm'ity. Dividing the system into
small relatively independent pieces
benefits verification in many ways. So it

is obviously advm_tlgeous to develop a
very modular system.

Many different verification
techniques exi_ but none of them are
comprehensive. Each is best at detecting
cermin pipes of errors, can best be
applied at certain points during
development, and requires certain
inputs. This imples that a mixture of
teclmiques should be used. Furthermore,

13

02/07/92

to minknize cost, the tedmiques should

be applied in a certain order (Le., at a

certain point in the development

process).

Another key po/nt is that the earner

an error is found, the more cheaply it

can be found and fixed. This directly

implies that verification should be done

as early as po_le and that emphasis

should be placed on early detection

techniques.

The static testing _ of techniques
can be applied eafl/zst became thel, do

not rely on executing the software. So

they should be given particular

emphasis. Unfommately, many of these

techniques are _t (and somewhat

painful) to apply. This is not so much

because the tedmiqum are complicated

but became they requi:e a certain
amount of discipline on the part of the

programmer. They can also load to

tedious and time consuming work.

Abstraction, refinement and proper

documentation (as weal as modularity)

all make static testing easier. Since a

good design can make static testing,

which is important, much easier, having

a well designed system should be a high

priority.

All the verification implications

discussed in this section can be

summaized in one word - deMgm. How

the system is ¢ksigted has a strong and

direct iml_ct on how easily the system

can be verified. It is also part of

development and thus the cheapest place
to find and correct errors.

General Expert System V& V

Implications

The key idea that has the most

implications for F_,SV&V is that ESs are

software. Being software, the basic

V&V implicafiom discussed in the

previous section all apply to ESs. It also
means that one could start with a

convetional V&V approach and modify

it as necessary for ES characteristics.

The above implication turns out to

be very convenient because as has been

pointed out, ESs may satisfy some, but

not all of the ES implementation and/or

problem characteri_'cs. So if ES V&V
and conventional software V&V were

radically different, one would have to
make the difficult decision of whether

the system should be mated as

conventional of as ES. Instead, since ES

V&V is more of a variant of

conventional V&V, one can use a

conventional V&V approach as a base

and modify it as necessary based on the

ES characteristics (and extent of them).

14

02/07/92

Expert System Validation

Implications

Recall that one ES characteristic is

that the system m_y spplies the

experts heuristics ("rules of thumb") to

solve a problem. This occurs when the

solution to the problem already exists in

a expert and this solution need only be

translated into a comlmter program. An

implication of this _ is that

since the ES is a "done" of the expert, it

should behave closely to the expert. So it

must be validmd by comparing it to the

expert. An implication that is importam

but so obvious that it might be

overlooked is that an expert must be

readily available for validation, h is

always obvious that expem needs to be

available during knowledge aquis/fioo

but sometimes forgotten that they also
need to be available for validation

activities.

Instead of the ES being a clone of

ane existing expert, it may be a new

solution to a complex problem that has

never been _kqua_ly solved.

Oftentimes in _ch cases, it is di/Ytctdt to

determine if a solution to the problem is

truly cozrect. For eT,ample, in order to
check whether a certain _e is an

optimal one, all po_ schedules may

need to be generated in order to show

that none of the other schedules is better.

If this is impractical, then one may have
to be satisfied with the fact that the

generated schedule is reasonable and

qooks good" (e.g., it is at least as good

as the schedule generated by any

previous approach).

It may be the case that solutions can

be easily checked for conectness but can

really only be checked by an expert.

This is because correctness my be vagely

defined. It may be possible for a nc_-

expert to tell whether or not some of the

ES responses are right but hard to
determine the conectness of others. In

these cases, the expert will need to be

available to help in this analyze test case
results.

Expert System Verification

Implications

The format of a software symna's

design and code has a large effect on the

verification of that system. Because the

format of ES design and code is very

differem from conventional software, it
would seem that _ere would be some

related verification differences and as we

have seen, there are some d/fferenc_.

Most of the verification impticafim_ for

ESs are due to the use of non-procedura/

languages.

As was discussed in part 2, the

intemal interactions between parts of an

ES can be complex and difficult to

follow. Examples of rule imeraction

were given in the sample solutions to the

""-" !i

15

02/07/92

TIC problem. Rule, fi'ame, etc.
interaction, especially if it is complex
and not made explicit can make

knowledge bases extremely difficult to

analyze. For example, checking the

coxrectaess of a single rule potentiaRy

requires analyzing possible interaction

(both direct and indirect) with every

other rule in the knowledge base. A

direct implication of this issue is that

inspections, which are an important

verification tool, can be much more

difficult and less effective than with

conventional software.

A problem close/y related to the

internal interaction problem is that non-

procedural programs, by their nature, do

not make the problem solving method

explicit. So when a particular problem

solving method needs to be implemented

in an ES, it can be difficult to verify.

Internal interaction and lack of

explicit problem solving methods create

the biggest ES verification problem -

difficulty in manually analyzing

knowledge bases.

A selmrate issue is implied by the

highly iterative development that is most

often used in developing ESs. Each time

a program is changed, h must be
reverified before it is released.

Additionally, ff this issue is combined

with the need tO catch ca'rors as early as

possible in the development process, it

can be concluded that a program should

be reverified each time it is changed,

whether the newly changed version is

released or not. So the more iterafive the

development process, the more

reverification is done. So it is apparent
that ESs will involve a lot of

revcrificafion such as regression testing.

Other Implications

Aside from conventional software

and ES characteristics and aside from

software issues at all, there are a few

"common sease" implications that

shou/d be dearly made. "Ihese are called

"common sense" implications because

they do not rely upon any analysis of the

characteristics of a system and are ones

that it would be expected that anyone

would immediately recognize.

The first implication is that V&V

should be performed and it should be

performed as a _ activity. Any

effort to check the cmrectness of a

system is a V&V activity and one can

not know if the system solves any

problem without _g to see it if is

correct. So if conectneu is important,
V&V must be done. If co_ is in

no way imponmn, that is ff one either

has no expecmiom about what the

system will do or does not care what the

system does, then it is questionable why

the system is being built at all.

['.<c__]

16

02/07/92

Another common sense point is that

V&V will take time and money. A

recent survey of ES projects fmmd that,

on average, about 20% of the total

development cost is spent on V&V. So if
one needs an estimate of the total

development cost, the cost of V&V
should be included in the estimate.

Additionatly, many of the V&V

activities really need to be done by the

people developing the system and some

of them will take some extra time (e.g.,

minimum competency testing). Tune

should be included in the development

schedule for V&V activities. When they
are not included in the schedule and an

attempt is made to skip V&V or do a

minimal ammmt of it, especially early in

the development process, there is a great
risk of schedule over-ram later in the

process when errors begin showing up

and are time consuming to correct.

One common sense point memi_

earlier is that the expert is the best

person to check the cotrecutem of the

system. So, obvously, one should try to

involve the expert in some of the V&V

activities. This may be difficult to do

since often the expert's time is hard to

get. But it is hnportant to keep in mind

that it is easier to get pazt of the experts
time if one asks far in advm_e of the

final validation of the system. It is much

harder to get the expert to drop other

things at the last minute to help with

validation of the system.

It is part of human nature that after

someone looks at something for a long

time, they begin to see nothing new or
different in it. The also become bored at

look/rig at it. So ff someone misses an

error the first time they analyze a

program, they are less likely to catch it

the second time, even less lficely to catch

it the third time, etc. For this reason, and

for many other reasons, the developer of

a progam is usually the least qualified to

evaluate the correctness of it. Analysis

by another person who was not involved

in development can often find more

errors; this is usually called/ndependent

v&v. So independent V&V OAr&V)
should be done if possfole, that is, if one

or more people who were not involved

in the development of the system can be

found to help with V&V.

02/07/92

17

Guidelines

Overview

From the implications discussed in

the previous few sections, some
tecomm(mdadom for V&V of ESs are

readily apparent. After having discussed

all the implications, the

recommendations, or guidelines, can be

listed with little discussion. To make the

guidelines a little easier to use, they are

organized into major categories

What will require a little more

discussion is how to approach the V&V
of a system "from scratch". That is, it is

often much easier to study V&V

techniques and discuss general
recommendations than it is to develop a

complete V&V plan and approach for a

project that has no current V&V plan or

explicit approach.

the development of a

completely new V&V plan and approach

can be difficult the first time, the

students will be given a longer exercise

to practice this. That way, they will be
much better prepared to apply the

material in this workshop to their real

ES projects.

Project Management Guidelines

nam_ag

Many of the implications were

concerned with various aspects of

preparation and planning for V&V.

Various resources such as time, money,

and personnel need to be allocated for

V&V. It is not so much the case that

V&V adds a lot of cost and time to the

overall development plan but just that

for the plan to be complete and accurate,
V&V should be included.

All resources that may be needed for

V&V should be included in the plan but

one resource ttun is particularly

important is the experts time. It has been

discussed in several plances how the

expert can be used to assist with V&V

but usually the expert's time is difficult

to get. Eady platming to use the expert

will allow the expert to plan ahead and

reserve time for helping with V&V.

Also, V&V can get forgotten if

plans are made for doing it. This
is because much of the verification work

needs to be done early during

requirements and design time yet
sometimes the need for verification is

not apparent until much later in the

development when, as has been repeated

many times, it is much more expensive
todo.

" _'*" ¢1

02/07/92

18

Theremay also be a tetxim_ to skip

the creation of several things that or

needed for V&V because they are

perceived as not important to the

primary job of generating the system.

For example, many verification

problems can be mitigated by designing

the system in certain ways. So planning

to spend more time designing the

implementation can payoff later in
reduced verification cost.

In figuzing out a way to manage

V&V for a project, there is no need to

start fxom scratch. There do exist life

cycle processes along with associated

descritgions and documcmtafion formats

that cover a lot of the conventional

aspects and thus are a reasonable base to

use for managing ES V&V. Just make

sure that the life cycle includes all

types of testing. Also make mare that the

life-cycle used as a base is easily
tailored. Most well-documented

processes are primarily for large projects

so if they are to be used on a small

project, they win need to be
"downsized" to fit the project. The life-

cycle may also need to be tailored to fit

some parf_ar ES chamcte_'i_tim.At a
minimum, the life-cycle should support

an iterative devdognent wpmach.

Finally, the life-cycle should be able to

include support for checking all types of

correctness and all types of V&V

techniques. For example, the life-cycle

should be able to accomodate

prototyping.

A guideline that does not directly

come fiom the implications but does

address several of them indirectly is

configuration management. In order to

check conectness for a system, one

needs to understand exactly what is

included in the system. This is especially

important if the system is changing a lot,

as in a highly iterafive development

process. Proper configuration

management includes keeping track of

versions of all parts of the system and

keeping track of which part versions

went into a given executable system

release. In addition to reducing the time

spent tracking down problems only to

FL,_I that there was a misunderstanding

of what was included in the system,

proper configuration management can

help keep track of which parts have been

V&V'ed and what type of V&V has

been done on them. This is important to

get the full benefit of a modular design.

Problem Analysis Guidelines

The better one understands the

problem to be solved, the better one can

check that a proposed solution does

indeed solve the problem fully and

completely. So it is a good idea to spend

some time in the beginning of a project

to understand the problem to be solved.

This is especially important with ESs

19

02/07/92

because of the potential complexity and

vagueness of tim problems they address.

It may be necessary to try to reduce

the size and/or simplify an initial

problem descriptionS. Often, the first

description of the problem to be solved
contains extra information that is not

really part of the problem. It may also

mention related problems that are not

intended to be solved. It might include

problems that would be nice to solve ff

possible but are not as important as the

main problem to solve. F'mally, as was

discussed under ES misconcepdc_

there can be some over optim/s_

expectations about what can be done

with ES teclmology and this leads to

over overly large and complcx problem

descriptions. It is importam to identify,

as clearly as possible, the main problem

to be solved and realistic

about what the system is tmpected to do

to solve or help solve the problem. Once

the main problem is solved or at least

well-understood, it can be enlarged or

e mced. This a mach of arst
working on a reduced problem and later

expanding the problem is consistent with

the iterative development and V&V

approach.

When analyzing a problem to be

solved, it is importing to not commit to

an implementation approach, especially

not to commit to building an ES or not.

Silly as it may sound, one guideline

is just to expect the system to work

correctly 3. This may sound silly because

it should seem obvious that if one builds

a system, one should like for it to work

comx_y. However, as has been

discovered in surveying both ES and

conventional software developers, there

is typically a very low expectation about

the likelihood that a system will work

correctly, at least the first time it is

executed. Such low expectations should

be avoided because they can lead to a

lack of confidence in early detection

methods (i.e., an attitude of "No matter

what I do, I know it is not going to work

so let me just execute it and find out

what /m't right."). So the low-

expectation becomes a self-fulfilling

prophecy.

Requirements Guidelines

A good set of requirements is the
cornerstone of V&V. So either once the

problem is understood or as the problem

is being understood, it is important to

state as precisely as possible what the

system is expected to do. The

description of the requirements may be
formal or informal but it should be

easily undersood by a wide audience of

users and developers. User's need to

understandthe requiremems so they can

ensure that it describes what they really

want. Developers need to understand the

-_,_ .-

2O

02/07/92

requirements to ensure that they witl be
able to tell if the system is correct (so
developers do not have to constantly ask
"does this loot: fight ?"). Prototyping
parts of the requirments first can help
users and developers come to a common
understanding about what the

requirements mean. But prototypes are
very _t to V&V agains: so in
addition to the observable prototype
behavior, a more precise statement of
requirementsisneeded.

It is imponmt that the requirements
be as complete as possible. They should
include a complete description of the
behavior expected from the system. As
appropriate, the expected behavior
shou/d be documented in the form of

descra,ing the expected
operational use of the system. But
unexpected uses and simations should
also be coosider_ (though one can
never know for sure if all simatkms and

issues are covered by any set of
requirements).

In addition to the behavior of

sysmm, all other q,'pes of conecmem
should be considered and addressed in

Design Gu_le_tt, s

An extremely important point of this
workshop is that the way a system is
developed, especially the way it is

designed can either make verification
much easier or much harder. The

primaryway em designcan help with
verification is by breaking up the system
into small manageable pieces. The
different pieces, or modules, can then be
verified separately and verification of
many small systems is much easier than

verification of one large system. So
modular designs should be developed.

Modular designs, as discussed
earlier, are more effective for large
systems when they are documented at
differing levels of detail. So abstraction
and refmmnent should also be used

during design.

There are other ways that system
design can make verification easier. To
assist the verifier in _ the
completenem of design, the design
should be cross referenced back to the

requirements. Checking of consistency
can be made easier by using a common
notation across all modules. It can be

very confusing to compare two modudes
for consistency if they are documented
in very diffetem ways. It as important
that each module be doc--,_t_ed in a

particular style as k is that the style is
consistent. So, for example, although
precise mathematical notation is, in
general, good for verification, it is not
good if all the other modules are
consistently docmnented using
structured English.

02/07/92

21

General Guidelines

Because Independent V&V can be

effective, it is advantageous to look for a

independent Stoup of people to help in

V&V, say, final validation. Sometimes a

prospective user who has not been
involved in V&V can serve this role. It

is not necessary for a developer to spend

extra time teaching the user about the

system. For if the user can not figure out

the system and validate that it does what
it should from the available

documentation that demons_ates that the

available documentation is insufficient.

As has been emphasized several

times, one should always try to identify
errors and eliminate them as soon as

possible. Also, one should use a variety

of techniques instead of relying on any

one technique.

V& V Technique Guidelines

For all modules that lend themselves

to static testing methods, static testing

should defirdtely be used. In other

words, static testing should be used

whenever possible and to the greatest

extem possible. The slx_ific static

testing teclmiquc$ will depend on tim

designftmplementation langauge. Rule

consistency checking should be done on

rule-based systems while data

consistency checking should be

performed on frame-based systems. If a

classification type of ES is being

developed, sensitivity analysis should be

used. In atl cases, some type of

consistent design normion should be

used to create specifications for

specification-directed analysis.

One class of etro_ that is difficult to

detect using static testing techniques is

user-interface testing. These are often

best validated by exercising _em. So, in

order to find these types of errors early,

one must f'md some way to execme user-

interface fimcfions early in the system.

This can be done by cremmg simply
simulations of lower level routines that

have not yet been finished (called

"stubbing out a module" or

"scaffoldinf), say by having them

always return a constm_ value. This is

sometimes called "scaffolding". In

general, any function that one does not
feel comfortable with after static

analysis should be integrated into a

scaffolded system and execute& In a

way, this is like combining prototyping

with normal system development.

The above approach can be

combined with iterative development by

first developing those functions that are

the most risky. That way they can be

checked out early. Then other modules

that are more strai$1_fforward can be

incrementally added. Each time, the

system should be run through a reali_c

set of test cases. Good checking of user-

SI
_.__--_=_

¢ ..- . ,_

'iw.i'_

22

02/07/92

interface and amity couecuess requires
the system to be used the way it is

expected to be used in actual opemiom.
It is not good enough to ran a few

simple contrived test cases. Once a large

enough portion of the system has been
integrated, stress and performance test

cases should begin to be executed to

check out resouce-consumption
correcmess and to check out portions of

the system that are only used in unusual

situations. As the system grows, it is also

good to randomly exercise all portions

of the system, whether they are expected
to be used often or not.

At vmiom points during
development, one should assess the

amount of testing that vm'ious parts of

the system have received. If there are

major parts of the system that have

received little if my testing then the

tes_g approach (e.g., the test case suite)
should be musessed and enhanced to

where more parts of the system are

covered. To make test coverage analysis

easier, it should be combined with the

configuraticm management system so
that one knows which parts of the

sy_em have been changed since they

were last exercised by a set of test cases.

02/07/92

23

Recommended Apvroach

The previous set of guidelines are

very straightforward to tmdersmnd,

given the material that has been covered

in this wofl_shop. What is not as easy is

to see is how to put them all together in

a real-world setting to develop and

implement a V&V approach for an

actual expert system. So in this section,

a recommended set of steps will be

covered that can walk someone through

the process of developing and

implementing a V&V approach.

Before discussing the steps, it is

important to point out ahead of time that

it isnot necessary that each step take a

lot of time. Each step involves asking

oneself a lot of questions. It is not

necessaxy to initiate a study project for

each question. It may only necessm7 to

ask onmetf the question and spend a

minute thinking about the answer. It is

not always necemm7 to even arrive at an

answer. An mmwer of "I just don't

know" may be the right answer. The

important thing is to not neglect to

oneself a question ahead of time that
could be answered and which would

change the V&V approach, preventing a

serious problem or issue fi'om arising
later.

Asking and ml_wering even trivial

questions and documenting the answers

can be of great value on projects

involving several people. The answer

may be obvious to one person but not
obvious to mother. Or the answer could

be obvious to two different people but

they each think the amwer is different.

Sten 1: Analyze the Problem

The first step is to thoroughly

analyze the problem to be solved. For

ES projects, especially those that solve

complex problems, this step may be

quite long and involved. It may involve

an e_emive protoWping _tivity,

including multiple prototypes, to better

understand risky an_or complex parts of

the problem. And if the total problem to

be solved is very large, analysis of the

parts of the problem may be done while

other parts of the problem, that have

already been analyzed, are being

implemence&

As part of planning for V&V, it is

important to look for critical and non-

critical parts of the system. Hazard and

fault analysis (see part 1) are useful

techniques for identifying critical parts

of the problem. If it is possible to

redefine the problem to reduce critical

parts, that w_! reduce the V&V needed,

as well as making the eventual system
much safer.

If parts of the problem will require

significant amounts of knowledge to

02/07/92

24

solve, identify where that knowledge is

to come fi'om. That is, does it exist in

the head of an _ ? In the form of
written documentation ? Or wRl it need

to be created ? This characteristic needs

to be identified so it wgl be lmown if the

knowledge in the eventual system can

just be analyzed by m expert or, if the
knowledge is created as part of solving

the problem, extensive analysis and

testing of the new knowledge will be
needed.

Without thinking about how to solve

the problem, it is important to begin

thinking about what a solution to the

problem would do and how it would be

used. For example, would the system

solve the problem and take action on its
own ? Or would it make a decision and

simply report the decision back to the
user ? Or would extensive imemction

between a user and the system be

required in order to use the system ?
This type of information can be used to

begin identifying the kinds of

that will be most important.

It also helps to understand the scope of

the problem.

The problem should be compared

against the characteristics of an ES
problem. This is not so that one can
determine whether an ES

implementation technique should be

used. Instead, it is only to determine the

characteristics of the problem to predi_

whether any ES problem V&V issues

will be encountered. For ezzmple, does

it require human/expert judgement to

determine if the problem has been

su_y solved (Le., will the expert

be needed to look at test case resnlts) ?

Will it be possible to realistically

determine if any solution is cortea or

can one only determine reasonableness

of any solution ? Has this problem been

solved before (Le., can test results of the

eventual system be compared to
solutions generated by other means) ?

Step 2: Do Initial Planni_

It is important to emphasize that this

step involves only initial planning.
Becanse much is often learned in the

process of implemerning an ES,

comprehensive up-front planning is

sometimes not a good idea. And, as with

analyzing the lwoblem, it is not the case

that this step is only done once during

the development of the system; it may

be done for each iteration. Or it may be

done continuously, as each new

problem, issue or characteristic is

identified, the plan and approach is

adjusted accordingly.

Probably the most important

consideration of initial planning is to

determine what is to be accomplished

(during the first/next iteration of

development). That is, is the entire

problem to be solved or just a certain

x_ _ : " .'s

25

02/07/92

part of it ? Not only does this make it

clear what the developers are supposed

to do but it is also absolutely mandatory

thing for V&V to be performed. Unless

one knows exactly what goal one is

working toward, there is no way to

assess whether the goal has been

achieved.

It is also helpful during this step to

try m understand how critical each goal

is. This is slightly different from

analyzing the criticality of different parts

of the problem. During initial planning,

it is important to understand the

criticality of each goal (for the first/next

iteration) and how critical it is for that

iteration. For example, suppose there is a

goal of implementing a certain feature

that to see what its effect will be on the

rest of the system (i.e., if it wR1 interfere

with other features). This goal is
noncritical in the sense that whether or

not it works correctly is not as important

as whether it adversly affects other pans

of the system, especially other critical

parts.

Estimating size and cost of software

to be implemented is always difficult. It

may even be much harder for ESs

because of the nature of the problem and

the implememafion approach. However,

it is important to make an estimate. Is it

three weeks of labor or three years ?

Also, be very sure to include V&V costs

in this estimate. For some systems, this

can make a very big difference.

Consider again the goal of making a

change only in order to determine its

effects on the x_t of the system. That

change may be trivial to make but

analyzing a]/ its effects on the system

may requhe exten_ve V&V.

Initial planning should also involve

trying to identify appropriate milestones
for the first/next increment. For

example, if the expeR will be needed

during validation, it could be helpful to

estimate, in advance, when they would

be needed for validation. So one good

milestone might be "System Testing

Begins". Idemifying milestones can be

much easier if a standard life-cycle

model is used. However, no one would

suggest identifying a bunch of

milestones that are not meaningful,

whether they follow a standard life-cycle
model or not. Milestones such as "I0%

complete" can be of little, if any, value

to anyone.

From the initialcosting and sizing,
as well as from the answers to other

planning questions, it will become

appaxent that certain things will be

needed at certain times. For example, the

expert might be needed again when

system testing begins; not is it important

to communicate this fact to the expert

but the expert should be kept aware of

stares (i.e., is the "System Testing

Begins" milestone expected to occur on

02_7D2

26

time 7) In genera/, one should be c&eful

to fonow up on actionsidentifiedduring
initial plmming, especially if they

involve acquiring resources that wil/be

needed later.

The main input to the initial

planning step is an understanding of the

problem (f_om step 1). During initial

planning, one should double check this

information. For example, is the

problem still too broad (i.e., is initial

planning difficult because the problem is
still not well mglegstood ?) Another

example is, givcm the estimated cost, is it

worthwhile to try to solve this problem ?

Such questions should be asked during

initial planning instead Of at some la2ef

phase of development.

The last but not least conmde_fion

of initial planning is to make sure that

requirementshave been created dazing
problem analysis or else will exist early

in develolxnent. Because this

is not advocating a development life-

cycle, it is not said when requirements

should be written but only that they are
written and used in V&V.

Sten 3: Perform Se_ieatio_

Directed Analv_ Durinl

Design for the system should be

created. It is not necmsaty that the

design be documeaed from
the implementation (in fact, verification

would be easier if it were not) but only

that the design of the system be

documented. Also, it should be

documented in a form that supgxnts

verification. That is, it should support

static testing, preferably specification-

ana]ys . Any of the
specification forms mentioned in part 2

could be used. At reasonable points

during design (at a minlmnm as each

module is completed), the design should

be _ for completeness and
correcmess. This verification should be

done by the designer but it should also

be done by others also (to get some

relatively kstependent views). The

expert cam be useful with high level

design reviews but will probably not be

needed for lower level design reviews.

The design should also be mapped

back to some higher level document or

infozmaficm.Very high levd design may

be mapped back to requirements, a

prototype, and information from

problem analysis. As the design gets

closer to the eventual implementation

language (e.g., ndes or flames) then a

static testing approach suitable to the

implementation language should be used

(e.g., rule consistency checking).

02./07/92

27

$ten 4: Check Each Comnleted

h re m

In addition to doing static testing

during design, dynamic testing should be
done to cheek certain functions as soon

as a module can be executed, umally at

the end of an iteration of develolxnent.

Tests to check the overall '_ealth" of the

system can check how well verification
was done. If verification does not reveal

many errors during design but the first

initial tests reveal many problems, then
that is an indication that verification was

not being done effectively. This may

require either a change to the design

approach (e.g., to simplify it) or to the

verification _Dproach (e.g., using

different techniques or a different type

of specification language). These

can be according to realistic operating

scenarios or they can be random. Stress

testing should also be done to check how

effective verification was with parts of

the system that are used in complicated

off-nominal operating situations.

In addition to checking verification

effectiveness, dynamic testing sttould be

used at each iteration to check out types
of correcmess that are difficult to

analyze statically such as user-interface

correctness. Using realistic scenarios,

each display should be bzxmght up and

inputs should be made. It is also good to

check overall system execution, that

system initialization such as opening

files and system termination such as

dosing files are done correctly. That is

became static testing is better for testing
detailed functions than it is for

predicting overall system behavior.

Before testing of the iteration is

complete, try to check coverage of the

testing. If there are no tools used to

measure the coverage of test cases, then

this may have to be estimated. But, at a

minimum, the coverage at the module

level should be determined, i.e., was

each module executed at least once by a

test? If certain parts of the sytem were

exer_ little, if any, then additional

tests should be generated and executed.

Either during or after the exercL_ing

of new features to the system, the enture

system should be exercised to check that

the new features did not interfere with

the functioning of older features. Often

this is done during the initial health

testing of the system. But if armlysis of

test coverage reveals that there are major

parts of the system not tested, especially

ff they are in areas that are related to the

newly changed areas, then previous test

cases for those areas (i.e., regression

tests) should be re-executed.

It is good for devdopers to perform

the initial tests but at some point during

testing, others should be involved,

especially potential users and experts.

02/07/92

28

Discussion

There should be no suprises to the

student in the _vions section. So rather

than spending too much time discussing

the previous section, it would be best to

cover it relatively quickly and discuss

how it might be applied to the enhanced

TLC problem. This can be used as a

"warm up" exercise for the main
exercise in the next section.

The class exercise basically involves

applying the four steps from the

previous section to the TLC problem.

This should be relatively easy because

much of the work has already been

done; most of the examples used to
illusuate the material are based on the

TLC problem. It is impmtm_ to point
this out so that the mulenm realize that

they are not expected to generate new

ideas about the TLC problem. Instead

they should be enconraged to bring up

examples previously given and relate

them to the four step approach. For

example:

Step 1 : Problem analysis

• Much of the problem is conventional

and only the "enhanced" TLC

problem has characteti._cs of an ES.

• The ES parts of the problem are

based on an existing solution in the

form of an expert traffic cop so the

02/07/92

solution will be designed by

knowledge acquisition.

Most parts of the problem are not

vague and it appears that testers will

be able to determine, objectively K

the results of test cases are correct -

an exception is judging fairness and

for this it would be good for the

traffic cop to check cases involving

judgement about fairness.

Step2: Initial Planning

• The fi_t iteration should probably

involve implementing the

conventional part of the TLC

problem and a second increment
used for the enhanced features.

Becanse the first increment is

relatively straightforward, no IV&V
is needed but some IV&V w_l be

needed for the second increment.

The expert win also be needed for

final valiation to check the resultsfor

fairness.

• It will be good to do some initial

design which will result in

idmtifying several modules which

can then be sized. For example, the

first increment appears to involve

one simple, two medium, one one

moderately complex module; so we

could guess that it wiLl involve about

4 1/2 days (4 1/2 = 1"1/2 + 2"1 +

1"2). Adding about 20% V&V time

29

still makes it about a week of labor,

give or take.

Step 3: Design and Specification-

Directed Analysis

Several examples of specifications

involving the conventional TIC

problem have been given.

For the enhanced version of the TIC

problem, it st_ appears that a rule-

based approch makes sense given the

heuristics offered by the expert

traffic cop. These heuristics could be
made more formal in the form of

precondiu'ons and postctmd_ons.

Step 4: Checking of Each Increment

Coverage of the conventional

problem could be checked by

checking that each state and state

transition in the state-transition

diagram was covered. If this

involves firing each rule at least

once, then this should be adequate.

There is no real user-interface in

terms of windows or menus. So no

special testing for this is needed.

• The enhanced TLC problem could be

tested statistically. Diffetm_ arrival

rates of cars and pedimims can be
generated in each direction, creating

heavy, medium and fightconditions

in each direction.Developers can

check that traffic seems to flow well

in all directions but the tra_c cop

needs to be brought in to check some

of the test cases for _imess. He

should probably check those

involving combinations of very

heavy traffic in some directions with

medium and/or fight traffic in other
directions.

Exercise

After discussing the four step
approach as applied to the TI_ problem.
The class should be divided into several

groups. Each group should be given one

of the case study problems. For O.eir

given problem, they should think

through the four step process. It w_ not

be possible for them to ask all of the

questions such as test coverage but they

should be able to think thi_gh the

entire process and see which questicm

they are able to answer. Most

importantly they should think about the

implications of the answers to each

question and what things they would

have in their V&V approach th address

the implications.

h will be easy for some smdems to

spend a great deal of time en this

exercise. It is important to keep each of

the groups moving through the process

and not spending more that 10-15 rain.

on any stepof theprocess.

02/07/92

3O

Although this is a course on V&V,
the students d_ould now be aware of the

impnance of good design (e.g., whether

it has a modular design). Since it is

expected that the students also be ES

developers (i.e., not just V&V'ers of

ESs), they should be able to design

solutions to the problems. So this

exercise involves them designing very

high level solutions to their given

problem. They should be encouraged to

think about keeping the designs at a high

level, designing the solution so it will be

easier to V&V, and designing it so that

others can easily understand it. The

reason for this last enmutagement will

become apparent to them because they

will be asked to give their design, once it

is fairly complete, to another team who

will then act as an IV&V team to plan

the final validation.

Once all the teams have traded

designs and done the IV&V part of the

exercise, they should discuss their

thoughts on ,the exercise with the rest of
the class. This can ell:her be done as a

class exercise,by having each group

stand up and discuss theirthoughts,or

by going around the room, soliciting

thoughts from each person.

02/07/92

7" " ._

31

K¢/tct,

• Pamas, D.L.,

Clements, P.C., "A

Rational Design
Process: How and

Why to Fake It', IEEE
Transactions on

Software Engineering,
Feb., 1986

Describes why one
would wish to

document a product as

if it were designed

according to an

idealized development

process/methodology,

even if was developed

in a very ad-hoc
manner. Also includes

suggestions on what
the documentation of a

product should contain.

2. Fox, M.S., "AI and

Expert System Myths,

Legends, and Facts',

IEEE Expert, Feb.,
1990

Contains personal

observations by the

author that help expain
some causes of

ineffective AI

applications; many are
due to a

misunderstanding of AI

technology.

3. Guttag, J.V., "Why

Programming is Too
Hard and What to Do

About It', Research
Directions in Computer

Science: An MIT

Perspective, MIT
Press, 1991

Contains personal

observations by the
author on the

difficulties in software

programs. The author,

a respected professor
and researcher in

software development

I'<_'__'l

02/07/92

32

techniques, offers

some very candid

opinions in this paper.

4. Schank, R.C.,

"Where's the AI ?', AI

Magazine, Winter 1991

A very readable

description of some

personal observations

bythe author on some
difficulties in

developing truly

intelligent systems.

This article is highly

recommended reading.

5 "KBS V&V - State of

the Practice and

Implications for V&V
Standards"

This paper is included
in the references
section. It summarizes

a survey that was

performed of 60 expert

system projects to
determine what

02/07/92

techniques were

currently being used to

V&V expert systems
and what difficulties

were being
encountered.

6. Brooks, F., The

Mythical Man Month:
Essays on Software

EagJ__edl_,Addison-
Wesley, 1975

The classic book on

software engineering. It
is a collection of

personal observations
on software

development. Although
the book is many years
old, the observations

are just as true today

as they were 15 years
ago. This book is very

highly recommended

reading.

7. Geissman, James R..
"Verification and

Validation for Expert

33

Systems: A Practical

Methodology." Abacus

Programming

Corporation, Van Nuys,
CA., SOAR

Conference, 1990

(???)

8. Marcot, Bruce.

"Testing Your

Knowledge Base." A!

Expert, July 1987

This article offers some

practical advice for

testing knowledge

bases by listing some

very general

guidelines. It also has

a good detailed list of

types of correctness.

9. Hall, A., "Seven Myths
of Formal Methods',
IEEE Software,

September, 1990

10. Bundy, Alan. "How to

Improve the Reliability

of Expert Systems."

02/07/92

11. Culbert, Chris.

"Knowledge-Based

Systems Verification
and Validation." The

Verification and

Validation of Expert

Systems Workshop.
Austin, "IX, June 18,
1991.

12. Froscher, Judith N.,

Jacob, Robert J.K.. "A

Software Engineering

Methodology for Rule-

Based Systems."
IEEE Transactions on

Knowledge

Engineering Volume

2. No. 2, pp. 173-189,
June 1990.

13. The Institute of

Electrical and

Electronics Engineers
(IEEE). "IEEE

Standard Glossary of

Software Engineering

Terminology."
AN$1/IEEE Std. 729-

34

198S. 345 E. 47th

Street, New York, NY,

February 18, 1983.

14. Waterman. Donald A..

A Guide to

Addison-

Wesley Publishing

Company, 1986, pg.
187.

02/07/92

Tu _

35

Works hop on
Verification and

Vafidation of Expert

Systems
Introduction

Authors:

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation

3700 Bay Area Blvd.

Houston, TX 77058

Verification Validation

Day I = Part 1: Conventional Software V&V

• Verfication and Validation (V&V)

• Conventional Software (i.e., non
expert system) V&V techniques

• Primarily lecture

Day 2 = Part 2: Expert System V&V

• Differences between expert systems
and conventional software

• Expert system V&V techniques

• Part lecture, part exercises

Day 3 = Part 3: Guidelines

• Summary of V&V considerations

• Recommended V&V process
(guidelines)

• Some lecture, mostly exercise

03/11/92 2

4'

Student Materials

1. Copy of all presentation slides

• Part I (tab)

• Part2 (tab)

• Part 3 (tab)

2.Handouts (tab)

• Initially empty

° Will be handed out periodically

during course

• Contains exercises and some

possible solutions

03/I1/92

Student Materials ...

3.Case Studies (tab)

• Two complete solutions to TLC
problem

• Additional case studies to be used
for final class exercise

4. References

• Collection of optional but suggested
reading

03/11/92 4

Class Partici ation

Questions encouraged during lectures

Class discussion questions will be posed
(informal roundtable discussion)

Will be divided into teams for some
exercises

• Results discussed informally for all
but final exercise

• Results of final exercise presented
before class

• Exercises are not a test, Ask

questions.

03/I1/92 5

What you should learn

What is V&V and why it is important.

0---. Differences between conventional and
ES V&V

Conventional and ES V&V techniques

Some key V&V rules of thumb

How to make V&V easier

O'--,r A suggested approach to V&V

03/I1/92 6

Workshop On
Verification and

Validation of Expert
Systems

Part 1: Conventional
Software

Authors:

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Oorporation

3700 Bay Area Blvd.
Houston, TX 77058

Table of Contents

L

dT_ _ _-............. _I-19

IL TmilZ lqlll_

Static T__,_.__ _.. I1.11

_le Modeb-- ,11-17

m. 1'he Trd_ Cmtnam. h, obkm

e,'obkm _ _ _.......... _.............. m.2
m,,_mEVk, w..... _ _ m4
RdMmmm_ ... m.$
Idemir.:86_ _ Stam _rr.7

iv. _T_

Vo SystemTestingT--h_ ___v-t
l;'unctie_ ____ _............... _ V.2
sar_ C,manm _..... v4

P.mur_ r_amm,WamCorm:t,_ .__................. _v4

VL U_t_mtmU_ Tmt_
Fumetimd_ _....... vx-2
sd_ Cmtctnm ;_,._._.................... _'v't4

vlL Stmk Tmt_g
gmctlo_ _

sar_ Cm'm:tnms--_.................
.................. V111.2

.......... Vlll-8

03/11/92

Table of Contents ...

nx. smmm_

IX. AplmmdixA: Refm'mc,m

X. AppmdixB:T_ Vs.Ptmsm

XI. _ C: Tedmiqum Vs. CwremN_

X]IL _dix D: Techniquu Vs. Ridrm'_cm

03/11/92

l

Introduction

Overview

Purpose

• Review conventional V&V techniques

• Justify the need for these techniques

• illustrate techniques on a sample
problem

Self-imposed Constraints

• Discuss techniques independent of a
specific life-cycle model

• Do not assume a particular
development methodology

• Separate the description of V&V from
the similar description of designing a
software system

02/20/92 I-2

L
o

Overview...

Notes

• Our focus will be on V&V, not on how
the system is developed.

• We will not assume a background in
V&V or conventional software

development.

• In Part 1, we will discuss software in
general, not expert systems per se.

02/20/92 1-3

Overview ...

Key Tenants

• A full understanding of the problem
is never initially possible but must be
developed incrementally along with
the system.

• Correctness can never be practically
proved and a system will always have
errors.

• To develop test cases, one needs to
understand the problem being
solved.

• The earlier an error is discovered, the
more cheaply it can be corrected.

0_0/92 I-4

Goals

To show that V&V should be done

• Verification helps a developer
implement the system quickly and
cheaply.

• Validation ensures the system solves
the customers problem in a reliable,
predictable, and user-friendly
manner.

0_0_ I-5

Goals ...
• I

To show that V&V works best when

performed as the system is developed

• This will be done as we review the

major V& V tasks.

• For a V&V task, we will look at the
inputs required from a corresponding
development task.

To show that the system can be developed
so as to make V&V easier

• We look to see how V&V might be
done more easily and cheaply by
doing some tasks earlier in the
development process.

O2/2O/92 I-6

The Verification Puzzle

0--.: There are many pieces to The
Verification Puzzle

• Functional Correctness: A correct

response for every stimulus to the
system, during installation and
checkout as well as operational use

m

• User.lnteffaceCorrectness:

Responses intended for human view
are clear; expected stimulus does not
put excessive burden on the user

02./20/92 I-7

The Verification Puzzle ...

Pieces to The Verification Puzzle ...

• Safety Correctness: Will never
generate a response that will cause
harm to anyone or anything

• Resource Consumption Correctness:
No more processor time, storage,
bandwidth, etc. are used than is
allowed

• Utility Correctness: The system
(sufficiently) satisfies the user's
needs.

o2Ro/92 I-8

The Verification Puzzle

_L

Safety

Resource
Consumption

User
Interface

Utility

Functional

02/20192 I-9

The Verification Puzzle ...
• I II I I I I I

Three aspects tO showing
correctness- consistency, completeness
and termination.

1. Consistency

• The system is both externally and
internally consistent

External- correct outputs and
actions (e.g., hitting ESC from any
window produces the same result)

In,temal- all intemal items are
consistent (e.g., integer variables are
only assigned integer values)

02/20/92 1-10

The Verification Puzzle ...

0---: Aspects to showing correctness ...

2. Completeness

• The system does all it should

Accepts all required inputs

Performs all required actions

Creates all required outputs

Maintains all required data

• More difficult than checking
consistency

02/20/92 Z-lZ

The Verification Puzzle ...

o---,r Aspects to showing correctness ...

3. Termination

• correct programs produce the right
output for all possible inputs

• consistency and completeness show
that all outputs are correct

• termination shows that output is
always generated

02/2O/92 1-12

The Verification Puzzle ...

There are many different types of software

• Large software systems vs. smaller
self-contained problem solvers

• Highly complex vs. less complex
software

• Critical software vs. noncritical
software

• Expert system vs. a traditional
software problem; that can be
conveniently solved using expert
system techniques

02/20f_2 1-13

The Verification Puzzle ...

There are many V&V techniques

• Some are more suitable for certain
classes of correctness than others.

• Some are more suitable for certain

types, sizes and/or complexities of
software.

The puzzle is to match techniques to
situations.

02/20/92 1-14

The Verification Puzzle ...

0---,r This large puzzle can be divided into
smaller puzzles called:

• System Testing: Dynamic testing
of all classes of correctness of an

overall software system

m

• Unit�Integration Testing: Dynamic
testing of small self-contained pieces
of an overall system, focusing on
certain classes of correctness

• Static Testing: Analysis (desk
checking) of software specifications
(requirements, design) at different
levels of abstraction, focusing on
certain classes of correctness

O2/20/92 1-15

The Verification Puzzle ...

These smaller puzzles are called test

phases and will be discussed separately

• A breakup of these phases into an
ordered sequence of tasks is part of
the development life cycle.

• We will not restrict our discussion to

any specific life-cycle.

02/20/92
1-16

"l;he Verification Puzzle ...

There is a testing phase for each major
development phase "

• System testing tests overall system
requirements.

• Integration and unit testing test the
units and subsystems created during
system construction

m
• Static testing can be used to check all

representations of a system

design, code, requirements, etc.

• There is an implied order to these
testing phases

has cost impliCations

implies earlier phases support later
phases

02/20/92 1-17

PhasesofCorrectness

Requirements SystemTest

htgrationTest

Code _ Test

StaticTesting

0_0_
1-18

Overview of Test Phases

each phase will be examined,
highlighting'.

am_

• Characteristics: An overall

description of the test phase

• Inputs: Each phase requires
certain information before it can be
applied,

• Implications: How the required
inputs can be acquired from other
development or testing phases.

an example system will be
discussed.

Third, for each phase, specific techniques
will be discussed and illustrated using the
example

02/20/92 1-19

Testing Phases

Characteristics

• Black box: Does not "look inside the

system" to see how it was
implemented; only looks at the
systems required and observed
behavior

R

B

S

?
0

N

S

E

S

• Behavior. Can be described in

terms of stimulus/response pairs

02/20/92

• Validation: Checks that the sytem will
satisfy the users' needs

]I-2

S stem Testin ...

Verification vs. Validation

Verification: "Am I building the product
right ?"

• Best when performed during system
development

• Emphasize showing correct
implementation of requirements

Validation: "Am I building the right
product ?"

• Best performed when the system is
complete

• Can be partially done early via
prototyping

• Emphasis is on ensuring the
requirements are correct

02/20FY2]I-3

System testinq ...

Inputs

• The software system itself.

• Ideally, for each possible stimulus:

description of the required response

indication of criticality (i.e., safety
implications of the response)

indication of response time allowed
(if constrained)

description of user interface for the
stimulus/response

indication of resources allowed for

generating the response

• In reality, impractical for all possible
stimuli

• Stimulus sequences can further be
described in terms of operational
scenarios

02/20_92]I-4

S E

T

I

M

U

L

I

mm

S

E
S

02/20/92 II-5

S stemTestin ...

_r

m

Implications

• Requirements can be specified in
terms of operational scenarios and
expected system responses

• The system can be developed so that
the classes of stimulus/response
pairs correspond to self-contained
units

Stimuli tend to fall into classes or

groups

)) These groups can be viewed as
units,.

These, in turn, may have subunits
based on stimulus/response pairs

• To overcome the impracticalities of
system testing, these self-contained
units can be tested separately

1 This makes _ _. T_ c_mbe dm_ere_uTdless of how the _ is actmdly

implemented. For example., _z_ Sp_ Shuttle Flight $oftwzz (FSW) is tested by pzincipal funcuon even
though tl_ may not _ _mhow _ FSW is implemented.

02/20/92 I[-6

Unit/Inte ration Testin

Characteristics

• White Box:. Does "look inside the

system" to see how it was
implemented; tests are created to
exercise the internals of the units.

• Behavior: Stimulus history can be
described in terms of internal

software "states" (e.g., sets of
variable values) and expected
transitions between states.

• Interfaces: Much of the testing may
focus on how well the separately
developed units (subsystems)
interface with each other (i.e., does
the system "hang together").

02/2O/92]1-7

Unit/Integration Testing ...

Inputs

• The software units themselves.

• Stimulus/response behavior for each
unit

• Identification of subsystems
(collections of units) along with their
required behavior

• Scenarios (e.g., operational
scenarios) that indicate how the units
and subsystems will be used

02/20/92 II-8

Unit/Inte ration Testin ...

Implications (o--_ modularity has many
benefits)

• Units can be developed and tested
separately (if design uses proper
encapsulation).

• The system can be incrementally
integrated and tested until the full
system is achieved (build a little, test
a little).

• Separation of units greatly reduces
the re-verification burden by reducing
the effects of changes.

02/20/92 1I-9

Unit/Integration Testing ...

Implications ...

• Design bridges the gap between the
problem (requirements) and the
tested solution.

• Individual units and subsystems can
be more easily mapped to
requirements.

m_

• Once tested, the detailed behavior
need not be re-tested during system
testing.

However, it is still impractical to test
exhaustively and many types of errors
can be more cheaply found by
analyzing the design/code.

• This impracticality can be handled by
static testing which we will discuss
next.

O2/20/92 H-IO

Characteristic

• Analysis: Software is not
dynamically executed; instead it is
analyzed statically (e.g., inspection).

• Specifications: Can take many
different forms but are generally
different from stimulus/response
behavior.

• Generah Can be performed on
software, design, requirements,
testcases, etc.

• Abstraction: Whereas dynamic
testing is on different sizes of
software (units, subsystems), static
testing is on different levels of
abstraction (requirements through
detailed implementation).

02/20/92 r[-ll

Static Testino ...

Complementary to Dynamic Testing

• Dynamic testing is needed because:

Humans can not execute software in

their head very fast.

Humans have difficulty managing
large numbers of small details.

• Static testing is needed because:

>> Comprehensive dynamic testing is
impossible.

X) Humans can perform more
comprehensive analysis than the
checking of individual
stimulus/response pairs.

>> Humans can analyze abstract
descriptions (unlike computers).

02/2O/92 II-12

Static Testing ...

0--_ Abstraction and refinement

• Abstraction

>>Simplifying the description of a
system by suppressing less
important details

More important actions are only
considered

>>Similar objects can be considered
identical

02/20/92 ll-13

Static Testing ...

Refinement

>)Is the incremental use of abstraction

>)Involves creating nested levels of
description, each higher level
refinement more abstract than lower
ones

Together, abstraction and refinement
allow humans to find problems much
better than computers can

02/20/92]I-14

Inputs

• Description of the problem to be
solved (can be very high level)

• Description of requirements (safety,
user interface, etc.)

• Specifications of the item (e.g.,
design object) to be statically tested,
possibly at different levels of
abstraction.

02/20_2 II-15

Static Testing ...

Implications

• Because.static testing can be done
on anyth,ng at almost any time (does
not have to wait for something
executable), it can be done hand-in-
hand with development; this
decreases cost.

m

• Static testing and design are natural
precursors activities for unit /
integration testing.

0_0/92 H-16

Life-C cle Models

• The testing phases are compatible with
many standard, well-defined life-cycle
models.

Example model : DoD 2167

02/20/92 II-17

DoD 2167
_ • ?. P, . , , .° .

Process Model

02/20/92 II-18

i ife Cycle Models ...

Example model: NASA M_)del

02/20/92 ri'-19

NASA Life"Cycle Model

!

si=_ki_

_mllmfm

i

O2/2O/92 I/-20

Life C cle Models ...

Example model: European Space Agency
Model

02/20/92
II-21

imm

Verify

I
$!

(_

1@

i

i

02/20/92 ru22

°

The Traffic
Controller
Problem

Problem Descri tion

Consider the following problem:

A simple traffic light controller at a four way
intersection has car arrival sensors and

pedestrian crossing buttons. In the absence of
car arrival and pedestrian crossing signals, the
traffic light controller switches the direction of
traffic flow every 2 minutes. With a car or
pedestrian signal to change the direction of traffic
flow, the reaction depends on the status of the
auto and pedestrian signals in the direction of
traffic flow; if auto pedestrian sensors detect no
approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15

seconds, if such approaching traffic is detected,
the switch in traffic flow will be delayed 15
seconds With each new detection of continuing
traffic up to a maximum of one minute.

Trr-2

Problem DescriDtion ...

• 3['akea few minutes and write down the
key tasks the traffic controller is to do

2. Exchange your descriptions with a
neighbor and then spend a few minutes
deciding how well their description fits
your understanding of the traffic
controller

3.Ask yourself "is this a testable
description of the system?"

02/21/92 m-3
I=_., -_I

Black Box View

Initial_ac/_,-bo_ew of,syStem testing

Sw_ Usht

l_s_ Thner lOT

Re_ TEer _-

02/21/92 m4

Refinement

19_.ine._=,ml.uJmmentsbased_.on,further
understanding of the problem

• State becomes evident

>) What is the color of the light in a

given direction?

How long has the controller waited to
switch the light?

• State helps identify and classify
stimulus/response histories.

• The state remaining constant might
imply testing one scenario verifies
the other scenario as well.

Continuing this refinement will lead to a
more organized test approach.

• Operational scenarios can be
constructed/selected.

02/21/92 m-5

Refinement ..,

- ° I

"', ._ _-,*_.,I, I) _. _ .Ib_'_ r" ' ' '. '-, ,- ". ,_-_

the West

• No North-South
Traffic for 15
seconds following
last signal change

1

I
\

• Switch West-East light to
Green

02/21/92 III-6

Identification of State
I •

i i i

• Car Arrives from
the West

• No North-South
Traffic for 15
seconds following
last signal change

n i

• Pedestrian Arrives
from the West

• No North-South
Traffic for 15
seconds following
last signal change

1
• Switch West-East light to

Green

02/21/92]]I-7

General

Techniques

General Techni ues

Regression Testing

• Typically a maintenance activity

• Requires some process for capturing
and retrieving test cases

• Assume that the traffic controller is

to be changed so that a pedestrian or
car may have to wait up to 1.5
minutes at a red light.

• All scenarios involving no
pedestrians or cars waiting at a red
light during a 2 minute interval
should work as before.

02/21/92 IV-2

General Tech niques ...

Pratotyp, lng =_._,_...........

• Develop a working model to test
aspects of requirements or design

• E.g., prototyping of a red/green light
system might reveal the need for a
yellow light.

!

02/21/92

General Techni ues ...

C:dr_peting Designs

• Define mutliple design teams

Design can mean any particular
representation of the system (e.g.,
requirements, code, etc.)

• Each team designs a solution

• Either select one that is best or

merge the differing solutions into one
common solution that is best

02/21/92 IV..4

General Techni ues ...

Independent V&V

• Define a team that will perform V&V
on the software

• Must be independent of the
development team to avoid any
potential bias in analysis of the
product

ram,

• Usually applied at the System Testing
level, but can be applied anywhere in
the process

02/21/92 1_r-5

.

System Testing
Techniques

Functional Correctness

Focus:

• Make sure that all identified scenarios

work correctly.

,> e.g., For each controller stimulus, is
the correct response generated?

.-
n

Specific functional testing methods

• Realistic Testing

)) Focus on those functions used the
most.

)> Realistically, the majority of the time
a request to change traffic flow is
received from a car instead of a

pedestrian.

)> Therefore, select the appropriate
majority of cases to exercise this
scenario.

O2/24/92 V-2

Functional Correctness ...

Specific functional testing methods ...

• Attribute-based Test Case Selection

>) Choose test cases based on an
attribute or characteristic such as

- Complexity, Criticality, Reliability,
Illlg

)> Tests can be chosen according to

- Statistical Record-keeping
- Random

- Error Guessing

• Example: Scenarios involving both a
request to change traffic flow and an
approaching traffic signal appear to
be more complicated,

02/24/92

Functional Correctness ...

Specific functional testing methods ...

• Cause-Effect Graphing

,, Technique for selecting tests that
exercise combinations of causes

)> Highlights interesting cases

m

uent_y

Not

02/24/92 V-4

Functional Correctness ...
i | •

Specific functional testing methods ...

• Boundary-Value Testing

)> Identifies cases at the boundaries of

each stimulus/response class

_ what happens when on-
coming traffic is detected at the exact

time a timer expires?

- This exercises the boundary value
of when the timer should expire so
that the light will change

02/24/92 V-5

Focus'.

• Verify that no stimulus generates an
unsafe response

m

Specific Safety Correctness methods

• Stress Testing

>)Choosing "off-nominal"tests that
will determine if the system can
operate safely in high stress and/or
critical situations.

)) Examples:

What happens when if the pedestrian
repeatedly hits the change signal
button?

)> What happens if a power surge
occurs while a pedestrian repeatedly
hits the change signal button?

02/24_2 V-6

User-Interface Correctness
i I

Focus

• Demonstrate that the human to
computer interface is correct

Specific User Interface Correctness
methods

• Active Interface Testing

)) Choosing tests that will determine
if the interface to an external agent
(e.g., a person) works correctly

>>Examples:

How heavy does the car have to be to
trip a signal to the controller?

Does a stuck pedestrian button
prevent a signal to change traffic
flow from being received?

02/24/92 V-7

Resource Consum tion Correctness

Focus:

• Show environment resources are

used correctly when a response is
generated

Specific Resource Consumption
Correctness methods

• Performance Testing

)) Choosing tests that "push the
envelope" (speed, accuracy, etc.)

>) Examples:

How will a delay in receiving a
request to change traffic flow affect
changing the light?

e.g., What happens at time tO

+14.999 when a pedestrian signal
was received at time tO ?

02/24/_2 V-8

Unit�Integration
Testing

Techniques

Functional Correctness

Branch Coverage

• Choosing tests that will cover all
possible outcomes of each internal
logical decision (e.g., if-then-else)

sp"

N0_So_ L_ is Green
We_F_ L_ _ Red

T .--currenttime

{2} No

t <T*2 mimes _ SwitchLisht

.----. Aeto Wating _ Light
Or

_ wai_g onL_

Yes {1) 1
•_ P_s s_uiv

02/24/92 VI-2

Functional Correctness .,..

Path Coverage

• Choosing tests that will cover all
possible combinations of outcomes
of each internal logical decision

_h-S0=hL_t = Gr==

T .--c_at time

J {_3

No_ _No

,. t,T*2rninutes _"=SwimhIAght

.___. _= waiting_uLi_
Or

P_tr= WakingonLig_

'= ProcessSiguav

02/24/92 VI-3

Functional Correctness ...

Condition Coverage

I

• Choosing tests that will cover all
possible situations that could lead to
an internal logical decision choice

v t <T" 2 minut¢s

{3} No

__ +ramwtimmm Li_t
Or

Pmkam maim m J+igm

'.- Pmoms+_

02/'24/92 VI..4

Functional Correctness ...

Partition Analysis

• Branch, Path and Condition coverage
focus on implementation

,_ This may not be sufficient

• Build input domains by analyzing the
specification for a given
implementation

• Blend this with the domains for
Branch, Path and Condition coverage
for more complete test suites

02/24F)2 v[-5

Functional Correctness ,..

InterProcedural Dataflow Testing

• Focuses on coverage testing for
areas where units interact

,> Look at Global data and Passed
Parameters

• Involves Building a Definition/Use
Table

>>Identifies pairs of statements for
each variable based on definition and
use

• Can be complex to build without
some automated assistance

02/24/92 VI-6

Functional Correctness ...
i

InterProcedural Dataflow Testing

Procedure IsMax(I, J: In Integer; Max:

Out Integer) Is
Begin If I > J

Then Max := I;
Else Max := J;
End If;

End IsMax;

Definit_n/Use Table for IsMax
II

Vnb!e __n ___.

Max 3 6

4 6

02/24/92 VI-7

Functional Correctness ...

Flavor Analysis

• Attempts to find errors of omission

• Documents"

>) expected sequences of actions

>) assertions about the effects of a

piece of code

• Methods:

)> Data Comments: documents

abstractions used in program
construction

_) Operator Comments: documents a
legal "ordering" of operators

• Goal: Compare actual execution
against expectations

o2F24/92 vI-8

Functional Correctness ...

Mutation Testing

• Changing the software to determine if
the current set of test cases are good
enough to detect the change,

• This technique evaluates the
effectiveness of the current set of
test cases.

_L_isG_

T ._comm H,_.

_ To2•- t minu_

No

No

--'-" Or
czrm wa o_I_

Switch_

_occss_v

VI-9

Safet

Reliability Testing

• Identify structures that could
adversely affect system reliability if
they fail

,) These structures do not necessarily
have to be error-prone themselves

• For example, most functions rely on
clock. All major system functions will
fail if the clock fails.

02/24/92 VI-10

User Interface Correctness

Prototype Evaluation

• Test the user-interface pieces of the
system early (before the other
subsystems are finished)

• Involves either stubbing out some
pieces of the system or developing a
simulation

° For example: the interfaces to the
light and signal hardware could be
"stubbed out" and simulated so the

traffic light software can be
prototyped.

02/24F)2 VJ-ll

Static Testing

Functional Correctness

Inspections

• Formal/Informal (or walkthrough)
inspections follow a set of rules to
guide a reader, moderator, author,
and several experts through
inspecting a work product.

• Continuous inspections involve just
an author and a peer. The peer
frequently reviews the work of the
author.

• The use of inspections is probably
the biggest single advancement in
the practice of verification.

>>There is hard psychological evidence
that introducing an "active
verification frame of mind"

significantly reduces errors

02/Z4/VZ V'1I-2

Functional Correctness ...

Anomaly Analysis

• Involves looking at sequences of

events for certain types of
"anomalies".

>)data flow anomalies such as "use-
set" and "set-set-use"

>> physical units mismatch such as
"length * volume"

• Examples:

)> after a light change, the clock
counter is referenced before it is
reset

)> there is an expression involving
"light color multiplied by time" which
doesn't make sense

02/24/92 "v-1I-3

Functional Correctness ...

b

Object-Oriented Analysis

• Object = set of data + associated

operations.

• The set of data has certain "legal"
values.

• Each operator accepts data with only
certain values.

• Analysis involves checking that no
combination of operators will result
in a data item getting an illegal value
or an operator being called with an
illegal input.

• Analysis will assure that the object
can never be put in an "illegal" state.

• Objects can be mapped to classes of
scenarios.

02/'24/92 "v'_-4

Functional Correctness ...

m

Object-Oriented Analysis

• Example:

>, time_counter is an object

,, time counter should never be

negative

>> reset and decrement are operators
on time counter

>, reset sets time to 120

>>decrement decreases time counter

by I if time_counter is greater than
zero, otherwise it does-nothing to
time counter

)) time counter can be shown to be

guaranteed to always be non-
negative

02/24Fy2 "v'_-5

Functional Correctness ...

Compilation Testing

• For some languages, such as Ada,
the compiler can detect some kinds
of errors in the architecture of
software

Defect Analysis.

• Involves identifying kinds of common
errors such as divide by zero

• Checking for instances of these
common errors

02/24/92 VII-6 i •

Functional Correctness ...

Stepwise Refinement

• A general technique of separating a
unit into equivalent descriptions,
each at increasing levels of detail.

• Analysis involves comparing each
level of detail to the preceeding one,
checking for consistency and
completeness.

02/24F)2 "v'I1-7

Functional Correctness ...

Axiomatic Analysis

° Involves specifying a "precondition"
and "postcondition" for each
fragment of code

• Each fragment is checked to see if
the postcondition is guaranteed to be
true after the fragment is executed,
assuming the precondition was true
before the fragment executed.

• Combined fragments are analyzed to
see if preconditions are always
satisfied and the end postcondition
guarantees the desired result.

02/24/92 VII-8

Functional Correctness ...

Symbolic Execution

• Uses pre/post conditions to trace
execution of the implementation

• Uses mathematical symbols to act as
placeholders for real values (similar
to classes)

m

Prov_ (Y=X' or Y=--X')
And (Y>=O and X=X")

pc: true, X: a. Y: -

pc: ta-ue

02/24/92 VII-9

Safety Correctness

Hazard Analysis

• A hazard is a very undesirable
situation (e.g., the light being green
in both directions)

• Each hazard is analyzed to determine
how it could arise (e.g., a hardware
failure results in one light stuck to
green)

• The system is analyzed to ensure that
a hazardous state can never be

reached (e.g., before red light is
changed to green, the other light is
checked to make sure it is not stuck

green)

02/2.4/92 VI1-10

Safety Correctness ...

Fault Analysis

• A fault is a potential error in the
system (e.g., failure of the module
that controls a light_timer)

• Analysis is performed to determine
the safety effects of potential faults
(e.g., failure of light_time means that
a light will remain the same color, say
green)

02/24j92 VII-11

Summary

Points

1. Verification vs. Validation

• Verification: building the system
right

• Validation: building the right system

m

2. Static, Unit/Integration, and System
Testing

• Static: desk checking/code reviews

• Unit/Integration: testing in pieces

• System: Overall V&V

3. Consistency vs. completeness

• Completeness: Does all it should

• Consistency: Does it correctly

4. Use of abstraction and refinement

• Abstraction:Suppress details

° Refinement: Incremental abstraction

5. Benefits of modularity

• Divide and Conquer

Techniques ...

Each type of testing:

• focuses on a different size of
software

• looks at different categories of
errors/faults

° uses certain techniques

,_can find errors more cheaply than a
later type of testing

• can reduce the cost of later types of
testing by providing information (e.g.,
units, interfaces)

• helps ensure a higher quality system
(e.g., the system doesn't "crash" at
the beginning of the first system test)

Techniaues
i

• There are many more techniques than the
ones discussed.

• No technique by itself is sufficient for all
levels of software and all types of faults.

• Choosing the right set of techniques is
important but can be difficult (the V&V
puzzle).

• Techniques can be grouped into three
types of testing

1.Static Testing

2. Unit/Integration Testing

3.System Testing

I

Appendix A:
References

References

1. Bezier, B.. Software Testing Techniques.

Nostrand Reinhold Company, Publisher, 1983.

Van

2. Boeing Aerospace Company. Software Test
Handbook: Software Test Guidebook. Document No.

RADC-TR-84-53 Volume 2 of 2. Rome Air Development
Center, Griffis Air Force Base, NY 13441, March 1984.

3. "Reliability Problems in Software Engineering- A

Review." IEEE Software Volume 2 No. 3 pp. 131-147,

July 1987.

4. European Space Agency. Software Verification and

Validation. Document No. PSS-05-0 Issue 2 p. 2-22,

February 1991.

5. Fagan, M.E.. "Design and Code Inspections to Reduce

Errors in Program Development." IBM Systems Journal

Volume 15 No. 3 pp. 182-211, 1976.

6. Goodenough, J.B. and Gerhart, S.L.. "Toward a

Theory of Test Data Selection". 1EEE Transactions on

Software Engineering. pp. 156-173, June 1975.

02124/92 A-2

References ...

7. Gries, D.. The Science of Programming. Springer-

Verlag New York, Inc. 1981.

8. Hantler, S.L. and King, J.C.. "An Introduction to

Proving the Correcmess of Programs." ACM Computing

Reviews. pp.331-353, September 1976.

9. Harrold, M.J. and Sofia L.S.. "Selecting and Using

Data for Integration Testing." IEEE Software Volume 8

Number 2 pp. 58-65 March 1991.

10. Hoare, C.A.R. "Introduction to Proving the

Correctness of Programs." ACM Computing Surveys pp.

331-353, September 1976.

11. Howden, W.E.. "Reliability of the Path

Testing Strategy." IEEE Transactions on

Engineering pp. 208-215, September 1976.

Analysis

Software

12. Howden, W.E.. "Symbolic Testing and the DISSECT

Symbolic Evaluation System." IEEE Transactions on

Software Engineering pp. 266-278, July 1977.

02/24/92 A-3

References ...
i

13. Howden, W.E.. "Comments Analysis and

Programming Errors." IEEE Transactions on Software

Engineering Volume 16 Number 1 pp. 72-81, January
1990.

14. Jalote, P.. "Testing the Completeness of

Specifications." 1EEE Transactions on Software

Engineering Volume 15 No. 5, May 1989.

15. Korson, T. and McGregor, J.D.. "Understanding

Object-oriented: A Unifying Paradigm." Communications

of the ACM Volume 33 No. 9 pp. 40-60 September 1990.

16. Leite, J. and Freeman, P.. "Requirements Validation

Through ViewPoint Resolution." IEEE Transactions on

SoftwareEngineering Volume 17 No. 2 pp. 1253-1269,
December 1991.

19. Linger, R.C., Mills H.D. and Witt, E.I.. Structured

Programming: Theory and Practice. Addison-Wesley

Publishing Company 1979.

02/24/92 A-4

References ...

17. Leveson, N.G.. "Safety." Aerospace Software

Engineering: A Collection of Concepts. Ed. Christine

Anderson and Merlin Dorfman. Volume 136 pp. 319-336,
American Institute of Aeronautics and Astronautics,
Publisher. 1991.

18. Leveson, N.G.. "Software Safety in Embedded

Computer Systems." Communications of the ACM Volume

34 No. 2, February 1991.

20. Liskov, B. and Guttag, J.. Abstraction and

Specification in Program Development. McGraw-Hill

Book Company 1986.

21. Maibor, D.S.. "The DoD Life Cycle Model."

Aerospace Software Engineering: A Collection of

Concepts. Ed. Christine Anderson and Merlin Dorfman.

Volume 136 p. 34, American Institute of Aeronautics and
Astronautics, Publisher. 1991.

22. Meyer, B.. Object-oriented Software Construction.
Prentice Hall, Publisher 1988.

23. Mills, H.D.. "Structured Programming: Retrospect

and Prospect." IEEE Software Volume 3 No. 6, November
1986.

02¢24/92 A-5

References ...

24. Mills, H.D., Linger, R.G. and Hevner, A.R.. "Box

Structured Information Systems." IBM Systems Journal
Volume 26 No. 4, 1987.

25. Mills, H.D., Linger, R.C. and Hevner, A.R..

Principles of Information Systems Analysis and Design.

Academic Press, Inc. 1986.

26. Myers, G.J.. The Art of Software Testing. John Wiley

& Sons, Publishing 1979.

27. Myers, G.J.. Software Reliability Principles and

Practices. John Wiley & Sons, Publishing 1976.

28. Myers, G.J.. Reliable Software Through

Design. Mason/Charter Publishers 1975.

Composite

29. Myers, G.J.. Composite/Structured Design. Litton

Educational Publishing 1978.

30. Pamas, D.. Software Engineering Principles.

Department of Computer Science, University of Victoria.

Report No. DCS-29-IR, February 1983.

02/24/92 A-6

References ,..

31. Richardson, D.J. and Clarke, L.A.. "A Partition

Analysis Method to Increase Program Reliability."

Proceedings, Fifth International Conference on Software

Engineering pp. 244-253, 1981.

32. Science Applications International Corporation. "Task

1: Review of Conventional Methods." Guidelines for

Verification and Validation of Expert Systems. Document
No. SAIC-91/6660, 1991.

33. Stevens, W.P. and Myers, G.L and Constantine, L.L..

Structured Design." IBM Systems Journal Number 2 pp.
115-139, 1974.

34. Wallace, D.R. and Fujii, R.U.. "Software Verification

and Validation." IEEE Software Volume 6 No. 3 pp. 10-17,

May 1989.

35. Wilson, W.M.. "NASA Life Cycle Model." Aerospace

Software Engineering: A Collection of Concepts. Ed.

Christine Anderson and Merlin Dorfinan. Volume 136 pp.
319-336, American Institute of Aeronautics and

Astronautics, Publisher. 1991.

36. Yourdon, E. and Coad, P.. Object-Oriented Analysis.

Prentice Hall, Inc. Englewood Cliffs, NJ 1990.

02/24/92 A-7

Appendix B:
Techniques Vs.

Phases

Techniques Vs. Phases

Techniques

Active Interface

Testing

Anomaly Analysis

Attribute-Based Test
Case Selection

Axiomatic Analysis

Boundary Testing

Branch Coverage

Cause-Effect

Graphing

Competing Designs

Compilation Testing

Condition Coverage

Defect Analysis

General

Phases

System Unit

¢,

,/

,/

,/

Static

02/24/92 B-2

Techniques Vs. Phases ...

Techniques

Error Guessing

Fault Analysis

Flavor Analysis

Hazard Analysis

Independent V&V

Inspections

Interprocedural

Dataflow Testing

Mutation Testing

Object Oriented

Analysis

Partition Testing

Path Coverage

Phases

General System Unit Static

o2f24/9"2 B-3

Techniques Vs. Phases ...

Techniques

Performance Testing

Pre/Post Condition

Testing

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

Stepwise Refinement

Stress Testing

Symbolic Execution

Phases

General System Unit Static

o_4/92]3-4

Appendix C:
Techniques Vs.

Correctness

Techniques Vs. Correctness

m

Techniques

Active Interface

Testing

Anomaly Analysis

Attribute-Based Test

Case Selection

Axiomatic Analysis

Boundary Testing

Branch Coverage

Cause-Effect

Graphing

Competing Designs

Compilation Testing

Condition Coverage

Defect Analysis

General

Kinds of Correctness

Functional Safety UI RCC

_Y

Utility

o:z/z4/_z c-2

Techniques VS. Correctness ...

Techniques

Error Guessing

Fault Analysis

Flavor Analysis

Hazard Analysis

Independent V&V

Inspections

lnterprocedural

Dataflow Testing

Mutation Testing

Object Oriented
Analysis

Partition Testing

Path Coverage

General Functional Safety UI

Kinds of Correctness

RCC

• ,m

utility

0_'_4/_ _3

Techniques Vs. Correctness ...

Techniques

Performance Testing

Pre/Post Condition

Testing

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

Stepwise Refinement

Stress Testing

Symbolic Execution

General

,/

Kinds of Correctness

Functional Safety Ul

,/

RCC Utility

02/24/92 C-4

° ,,t_ ¸, • _, °. . • ,_

Apper ix D:
Techniques Vs.

References

Techniques Vs. References

Techniques

Active Interface Testing

Anomaly Analysis

Attribute-Based

Selection

Axiomatic Analysis

Boundary Testing

Branch Coverage

Test Case

Cause-Effect Graphing

Competing Designs

Compilation Testing

Condition Coverage

Defect Analysis

Error Guessing

Fault Analysis

Ravor Analysis

Hazard Analysis

References

32

32,2

32

7,14

26

26

26

16

32

26

32

26

17,18

13

17,18

o2Fz6/92 D-2

Techniques Vs. References ...

............ T" i i | ,m ,

....... Techniques

Inspections

InterProcedural Dataflow Testing

Mutation Testing

Object Oriented Analysis

Partition Analysis

Path Coverage

•Performance Testing

Pre/Post Condition Testing

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

Stepwise Refinement

Stress Testing

Symbolic Execution

02/26/92

References

5,26

9

36,22,15

31

26

32,32,2

20

D-3

32

32

32

32

27-28,23-25

1,26

8,11

Workshop on
Verification and

Validation of Expert
Systems

Part 2: Expert Systems

Authors:

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation

3700 Bay Area Blvd.

Houston, TX 77058

Table of Contents

L Introduction

Goals... I-2

Overview = 1-3

II* Expert SystemDifferences
Expert Systemsare Software 11.2
Expert SystemImplementation Difrereaces rl.3
Expert SystemProblem Differences....................... 1I-5

HI. Two Traffic Light Controller Implementations
Overview ... m.2

Scenario Testing 111-3
Testing State Chaages m.s
Handouts and Exercise hi-10

Conventional Implementation BI-11

Expert System Implementation HI-12
Comparison and V&V Implications III-13
Handout and Exercise == rlI.20

Testing Good and Bad Designs rll-21

IV*, "Expert" Traffic Light Controller Problem
New Problem .. IV.2

Knowledge Aquisition Results IV.5
Exercise ... IV.7
Problem Features ... IV-8

V* Expert System Implementation V&V Techniques
Overview V-2

Rule Consistency Checking V-4
Data Consistency Checking V-14
Sensitivity Analysis: := V.L_
Smactural Testing :-............................. V.17

Speciflcatioa -Directed Analysis V.19
Decision Tables V.23

3/9/92

Table of Contents ...

VL Expert System Problem V&V Techniques
Overview VI.2

Knowledge Acquisition Correctness Checking VI-4
Minimum Competency Testing VI-$

Disaster Testing VI-7
Expert Review -.-...-.. VI.9
Explicit Modelling ... V-11

VEt. Appendix A: References

HX. Appendix B: Techniques Vs. References

3/9/92

Introduction

Goals

1.To understand the differences and

similarities between Expert Systems and
conventional software.

2. To understand how the differences

impact verification and validation.

3.To understand applicable analysis
methods/techniques to overcome these
impacts.

03/11/92 I-2

Overview

1. We will discuss how expert systems are
software, but a unique type of software.

• Different implementation languages

• Different problem types

2.To illustrate language differences, V&V of
two solutions to the Traffic Light
Controller problem will be discussed.

3.To illustrate problem differences, a new
version of the Traffic Controller Problem,
that is more like a "true" expert system
problem will be discussed.

4. Using the new problem, we will discuss
both new expert system V&V techniques
and modified "conventional" V&V

techniques.

03/11/92 I-3

Expert System
Differences

Ex erts s stems are software

Expert systems are:

• computer programs

• written using a programming
language

• executed in a (deterministic)
computer

A program may not be easily classified as
conventional or expert system.

• May include some but not all
characteristics

• May be part expert system, part
conventional

Problems that look expert system may be
easily (or better) solved with a
conventional solution.

03/I1/92 n-2

Ex ert stem Im lementation
Differences

Often uses some type of "AI language",
e.g.:

• Forward and/or backward chaining
rules

• Frames

• "AI language" characteristics

)> declarative (what) instead of
imperative (how)

separation of control and data

- execution sequence is not
apparent (but is implicit)

language semantics unclear or
complex (works by "magic")

- e.g., conflict resolution

03/11_)2 II-3

Expert System Implementation
Differences ...

Often developed iteratively

• especially if design by knowledge
aquisition

• especially if it is unclear whether the
solution will work satisfactorally

No explicit algorithm is used, e.g.,

t :=to

While t < to+ 2 minutes Loop

If Auto or Pedestrian

signal received

Then Process-Signal

Exit
End If

End Loop

03111/92 1"[-4

Ex ert S stem Problem Differences

Often solve problems requiring human
expertise

• solution already exists (in someones
head) and is translated to a different
form

• e.g., capturing the "rules of thumb" of
an expert and mechanically applying
them

• often called "shallow" or "surface

level" reasoning systems

,, as opposed to model-based (or
"deep" reasoning)

,> sometimes called "design by
knowledge aquisition" as opposed to
"design by analysis"

3/9/92 II-5

Ex ert S stem Problem Differences

Ullll
n

Expert Systems often solve problems that
have been difficult to solve with

conventional softwar e approaches

Sometimes rely on human judgement for
correctness of solutions (i.e., are "fuzzy")

May replace or just augment human expert

03/11/92 n-6

Two Traffic Light
Controller

Implementations

Overview

TLC problem does not have expert system
problem characteristics.

TLC problem could be implemented using
either conventional or expert system
implementation approach.

After further analysis of the problem, we
will look at a conventional and expert
system approach to the problem.

Though the problem "looks conventional",
an expert system approach to
implementation works very well.

Finally, we will look at V&V of each solution
and compare the differences.

03/11/92 III-2

Scenario Testin

Test case scenarios can be developed by
looking at possible combinations of
events.

Some event definitions:

.W.___:traffic light changes

t_i_n_lg: controller detects an
approaching auto or pedestrian in the
direction of the current flow of traffic

W.BJ_j_: controller detects an auto or
pedestrian waiting for the light to change
(in the direction opposite the current flow
of traffic)

v[.t,.P.y._:ordered pair describing an

elapsed time, t, and the event that occurs
(should occur)after that elapsed time.

03/I1/92 rn-3

Scenario Testinq ...

The following scenarios are generated from
our understanding of the problem

1.(2 minutes, switch) (2 minutes,
switch) ...

2.(t: t < 2 minutes, approaching) (2
minutes, switch)

3.(t: t < 2 minutes,waiting) (15 seconds,
switch)

4.(t:.t < 2 minutes, approaching) (t: t < 1
minute 45 seconds, waiting) (15
seconds, switch)

This list is NOT exhaustive; In fact, it is
impossible to come up with an exhaustive
list since the possibilities are infinite.

03/11/92 m4

Testin State Chan es

An alternative approach is to think of the
problem as changes in the state of the
traffic control system.

Then test that the system makes all the
correct state changes.

For example, the system can be said to be
in one of the following unique states.

• $1: In a 2 minute wait before

changing the light

• $2: In a 15 second wait before

changing the light and has been in
this state for less than 45 sec.

• $3: in the remainder of a I minute

wait before changing the light

03111_]II-5

Testinq StAte Changes ...

With the following event possibilities

• Approaching

• Waiting

• Time expires

• < 45 sec. in $2

• >= 45 sec. in $2

03/11/92
I]]-6

Testing State Changes ...

State Diagram

S

S S
2 3

< 45s in Staco 2

03/I 1/92 III-7

Testin State Chan es ...

If

• State diagram is analyzed and shown
to be correct

• Implementation can be shown to
make all transitions correctly

Then

• It is reasonable to think the

implementation is correct

Because there are only 7 transitions,
compared to an infinite number of
scenarios, testing state changes is easier.

03/11/92 m-8

•Testing State Changes ...

This type of approach is sometimes called
"conformance testing"; the implementation
conforms to the abstract solution (the state
diagram in our case).

But only transitions involving switching the
light are actually visible.

We can either test all ways of getting to
visible transformations or "look inside" the
implementation.

03/I1/92 m-9

Handouts 1 2 5 and Class Exercise

1.Divide into 3 teams.

• Procedural Implemenation Team

• "Short" CLIPS Implementation Team

• "Longer" CLIPS Implementation
Team

2.Study solution

3.Develop tests to "cover" all parts of the
given solution.

03111/92 m-lO

2

Conventional Im lementation

Case State Is
When S1 and Time Expires =,

State._SI;
When $1 and (Approaching Or

Light C"nanges)=>
State. S1;

End Case;

Loop

03/11/92 ln-ll

Ex ert S stem Im lementation

Ifwa_ Then
t sh andmediumtim_

03/11/92
I'll-12

Comparison and V&V Implications

Expert System approach turned out to be
easier/shorter.

• Production rules directly map to state
transitions

if (old state) then (new state) (and
action)

• Pattern matching simplified the rules

)) (3-4 times the number of Ada

"whens" as CLIPS rules).

• Procedural approach wound up
implementing a crude inference
engnne.

,) A loop with a big nested case
statement in it.

Therefore V&V should be easier on expert
system implementation, right?

03/11/92 m-13

Com arison and V&V Im Iications ...

Procedural appoach has fewer and simpler
internal interactions.

• Execution order is very explicit

,_ whens "executed" exactly once per
"cycle"

,) priorities are used in CLIPS to
control execution

• Pure functions (no side effects)

,) Function "Change_Light" affects
several rules

• No "garbage collection" concems

CLIPS implementation must retract
old facts

Therefore, because more subtle things
must be tested in the expert system
approach, it should be harder to V&V,
right?

03/I1/92 ITI-14

Com arison and V&V Im Iications ...

Both approaches have V&V issues.

Each has different V&V concerns.

Procedural concerns

• More decisions to test (more code)

• Overall control structures to test

(e.g., termination of the loop around
the large case statement)

03111/92]]]-15

Com arison and V&V im lications ...

Expert System concerns

• Must test correct cleanup of old facts
- facts are retracted only if they are
no longer needed

• Must test that there are no invalid rule
interactions.

• Must test function side-effects.

• Must test that rule patterns are not
too broad (i.e., act against too many
instances)

• Must test that rules only fire at the
right time (e.g., only at the end of a
"cycle")

03/11/92 III-16

Com rison and V&V Im lications ...

These different concerns create the need

for different test approaches and different
techniques for testing expert systems.

• Procedural testing focuses on
ensuring that the implementation
solves all aspects of the problem.

• Expert system testing focuses on
ensuring that the implementation
does not have unexpected
interactions.

• V&V of both must test that it solves

the problem and "does not do funny
things" but the emphasis is a little
different in each case.

• Most of the rest of part 2 will cover
new expert system testing
techniques that address the new
emphasis.

03/I1/92 IO-17

Com arison and V&V Im Iications ...

Different view of expert system V&V

• Would expect expert system failures
to be more like errors humans make.

,, Expert system computation model
based on how some psychologists
believe humans think.

y_ Conventional software based on a

much different computation model.

03/11/92 1TI-I$

Comparison and V&V Implications ...

Some sample errors humans make:

• Slips/Lapses: usually caused by
interruption in train of thought
(overlapping rule sequences)

• New exceptions: applying knowledge
that always worked in the past to a
new situation which turns out to be
an exception (rules with LHS too
broad)

• Erroneous beliefs: (bad rules)

03/11/92 m-19

Handout 3 4 6 7 and Exercise

1. Compare shorter and longer CLIPS
versions.

2.Discuss differences in rule interactions

3. Look at handouts.

03/11/92 m-20

Testing Good and Bad Rule Based Desians

The design of expert systems can greatly
simplify the new testing concerns.

The shorter version:

• has fewer rules

• has more complex rules

• is less modular

• has more rule interactions

• has a subtle problem (can you spot
it ?)

The shorter version is harder to analyze
(and thus to verify)).

The longer version can be tested in pieces.

03/11/92 m-21

"Expert" Traffic
Light Controller

Problem

New Problem

Consider the following problem:

At certain times of the day an intersection

becomes congested, the electronic traffic light
controller becomes inadequate and a
policeman is used to direct the traffic. The
same policeman has been directing traffic at
this intersection for a number of years and
there are much fewer complaints from citizens
about having to wait at this intersection (than
there were several years ago). It is now
desirable to make the electronic system
"smarter" so it can handle the same amount of

flow as the policeman while being as fair as the

policeman (i.e., he doesn't force any one
direction to wait for a longer time than another
direction).

03/I 1/92 IV-2

New Problem ...

The new system will function as before when
traffic is "light" and will switch to "smart mode"
when the traffic becomes heavy. In "smart
mode", the system will look at

• the length of traffic in each direction (new
sensors will be installed to provide this
information)

• the number of people waiting to tum left
as opposed to going straight (new
sensors will be installed to indicate how

many people are waiting in the left turn
lane)

• the speed of traffic going through the
intersection (new sensors will be
installed to provide this information)

03/I 1/92 IV-3

New Problem ...

Using this information, the system will
decide when to allow a street (north/south,
east_est) to either go straight, turn left, or
wait on another street.

1.Take a few minutes and write down the

key tasks the traffic controller is to do

2. Exchange your descriptions with a
neighbor

3.Spend a few minutes deciding how well
their description fits your understanding
of the problem.

• Is this a testable description of the
system?

• How is it different from the

conventional problem?

• Are there any new V&V issues,
compared to the conventional
problem?

03/11/92 IV-4

Knowled • Ac uisition Results

Initial knowledge acquisition from the
policeman reveals the following:

• the policeman walks a beat a few
blocks from the intersection and
when he hears several horn honks

close together, he goes to the
intersection to help clear the traffic

• if the line is so long in any direction
that he can't see the end of it then he

lets those directions (including
turning left) go for about three
minutes before changing

• otherwise, he lets each direction go
for about two minutes, except for
turning left which he allows for about
one minute

03/11/92 IV-5

Knowledge Acquisition Results

Initial Knowledge Acquisition ...

• He lets the longest direction go about
half a minute longer than the other
directions

• If the line waiting to turn left is small
when compared to the opposing
direction, he will skip them for one
cycle (i.e., let each other direction go
once more)

• If the line waiting to go straight is
•small, compared to the perpendicular
direction, let it go for half a minute
less

03/11/92

• If you can notice a car that has been
waiting for three cycles and has not
gone, let that direction go half a
minute longer (that line is just
moving slow; this roughly
corresponds to less than 20 cars per
cycle for 3 cycles).

W-6

Exercise

Analyze these high level results

• Look for conflicting statements

• Identify some test scenarios that will
determine if this solution seems to

satisfy the goals

• Think of some scenarios that this
solution does not seem to cover.

•-Discuss whether this is an expert
system problem or not

03/11/92 IV-7

Problem Features

,,j

Is the solution being created for the first
time or does it already exist in someone's
head ?

Is it a shallow or deep reasoning solution?

Would this be difficult to solve with
conventional software?

Does it rely on human judgement?

Will it replace or augment a human expert?

03111/92 IV-8

Expert System
Implementation
V& V Techniques

Overview

This section will summarize some key
techniques:

• specific to expert systems

• specific to implementation (e.g.,
rules, frames)

Each technique will be discussed in terms
of

• overall description

• implementation construct/aspect
addressed

• error detection capability

• tools available

• example(s) based on TLC problem

03/II/92 V-2

Overview ...

Will cover the most common/important
techniques.

Tools and automation will be discussed,
though few tools are commercially
available.

More discussion on how to use these

techniques will be covered in Part 3 -
Guidelines.

03/I1/92 V-3

Rule Consistenc Checkin 1,2

Attempts to find errors by checking for
certain classes of "anomalies".

• Anomaly = a type of relationship
between two or more rules that

"seems wrong", e.g.,

A-> B and C

B-> not C

• Anomalies generally indicate an error

Specific to rule-based implementation
(forward or backward)

Can find all "anomalies" but a human must

analyze anomaly to see if it is a problem.

Many research tools available, no
significant commercial offerings.

03/11/92 V-4

Rule Consistenc Checkin ...

Reachability anomalies (shorter CLIPS
version)

• Dead-end rules

,_ Del_old_changes does not affect any
other rule

)_ Is a dead-end rule because the fact to
be modified should have been

"signaLchange" instead of
"signaLchanges"

• Unreachable rules (shorter CLIPS
version)

_) If signaLchanged then ...

_) Would be unreachable because

"signaLchanged" is not created by
any other rule (should be

"signaLchange")

03/11/92 V-5

Rule Consistency Checking ...

Reachability anomalies ...

• Cycle Rules

Update_time is in a cycle

This "anomaly" does not indicate an
error in this case

Why?

03/]]/92

Rule Consistenc Checkin ...

Redundant Rules (longer CLIPS version)

• seLIong_timer:

if light_changed or
signal.in_direction green

then

set long_timer
retract medium timer
retract short timer

• retract medium timer:
• qmm

if lightchanged
then

retract medium timer
retract short timer

m

• There is an attempt to retract medium
timer twice if lighLchanged

0311;F)2 v-7

Rule Consistenc Checkin ...

Conflicting rules (longer CLIPS version)

• setlong_timer:

if light_changed or
signal.in_direction green

then

set long_timer
set medium timer
set short timer

m

• retract medium timer:
.mmm

if light_changed
then

retract medium timer
retract short timer

• there are two conflicting actions if
light_changed (set and retract timer)

03/11/92 V-8

Rule Consistenc Checkin ...

Dead-End Rule (Rule (2) Unreachable Rule (Rule C)

Cycle

03/11/92 V-9

Rule Consistenc Checkin ...

Graphing Techniques

• Petri-Nets2,15,17

Useful in describing dynamic
behavior of discrete event systems
(e.g., rule firings)

,_ Similar to other diagramming
techniques (e.g., state diagrams,
cause-effect diagrams, etc.)

Basic Elements

(_,(_,@ Tokens

Tj J-I

si

03/11/92 V-IO

Rule Consistenc Checkin ...

Graphing Techniques ...

• Petri Nets ...

Builds a network of propositions
(e.g., rule antecedents and
consequents)

)) "Tokens" are traced through the
network

Rule: If X has feathers
Then X is a bird

Initial:

Feather_ Bird{x)

Result:

Feathers(x) Bird(x)

03/11/92 V-II

Rule Consistency Checking ...

Graphing Techniques ...

• Petri Nets ...

)) Tracing highlights the kinds of
consistency errors just discussed

>) Can be helpful in finding
completeness anomalies

• Directed Graphs (or Network Flows)2

,, Rules are converted into a collection

of directed arcs (directed because of
inference)

,) First build a list of antecedent and

consequent propositions

,) Generate an edge to the graph for
each antecedent/consequent pair

)) Many algorithms exist for analyzing
reachability issues

03/11/92 V-12

Rule Consistenc Checkin ...

Graphing Techniques ...

• Connectivity Graphs16

)) Different kinds of matrices:

facts vs. rules, clauses vs.

rules, clauses vs. facts, etc.

_) Matrices can then be represented as
undirected graphs connecting
elements of the matrices

1>Can Help to identify the major areas
of correctness

- e.g., for Rulebases:

completeness,
consistency, redundancy,
dead-end rules

>>Can also assist in design (e.g.,
identifying modularity)

,> Supported by simple matrix
operations (see Handout #8)

03/11/92 V-13

Data Consistenc Checkin 3,4,5

Checking that data use is consistent with
data definition

Checks data/facts

Can find mismatches between data
definition and use

Is supported by some tools (e.g., CRSV)

• E.g., use of deftemplates in longer
version of TLC can catch errors like

the mispelling of "signal_change" in
del_old_changes rule (in shorter
version)

03/11/92 V-14

Sensitivi Anal sis6

Determining the sensitivity of one
parameter (data item) to changes in other
parameters

More a debugging than an error finding
technique

Supported only by a research tool

Most directly applicable to classification
problems

o3/1if)2 v-15

Sensitivity Analysis ...

E.g., Suppose, the goal was to output
system state based on system variables

• Given:

,> S1 = long_timer only

,) $2 - short timer and medium timer

not within 15 sec of expiring

,_ $3 ---by short timer and medium timer

withing 15 sec of expiring

• $1 is least sensitive because it does

not depend on the value of the
medium timer

03/I1/92 V-16

Structural Testin 7

Attempting to execute all parts of a
knowledge base

Can be adapted to cover any type of KB
construct

Does not detect any errors, just tries to
ensure comprehensive testing

Commercial tools available but are not

widely used (e.g., Expert/Measure)

03/11/92 v-17

Structural Testinq ...

E.g., generate test cases for longer CLIPS
solution that cover:

• each rule

• each path from update_time to
timer_expires

• an assertion and a retraction of at
least one instance of each fact

template

The creation of coverage tests can help
one find errors.

o3/11F)2 v-18

S ecification-Directed Anal sis8,9

Checking that implementation matches
specification

• Specification := assertion about a
part of the implementation, like a
"mini requirement"

Useful for all aspects of a knowledge base

Useful for finding any type of
implementation error

Not supported by any commercial tools but
research prototypes exist

03/11/92 V- 19

Specification-Directed Analysis

• in Timer module of the longer CLIPS
version

• assertion is that timer names are
unique

• by analyzing timer_name-conflict
rule, it can be verified that the
assertion is true (at the end of each
cycle)

Sometimes called "Formal Methods" (but
can be informal)

03/11/92 v-20

S ecification-Directed Anal sis ...

Some useful types of assertions

• data value constraints

e.g., timer constraint

• postconditions for rules

)> e.g., timer_name-conflict satisfies
postcondition "exactly one timer
called ?name will exist"

03/11/92 V-21

Specification-Directed Analysis ...

Some useful types of assertions ...

• abstract functions

e.g., light change action can be
abstractly described as

direction := NS if direction = EW
EW if direction = NS

• (precondition, postcondition) pairs

)) e.g., for change-light function

p__: green-light = NS or EW

post: green-light = NS or EW and
green-light/= green-light'

03/Il/92 V-22

Decision Tables10
!

Very popular in the early and mid '70s

Once thought of as a complete
development methodology

Really is a specification approach

Very similar to rule-based progamming

>) Left side := condition columns

)).Right side := action columns

_)A row is called a rule

Has some differences from rule-based

programming

), No pattern matching or unification

,>No chain of inference

03/11/92 V-23

Decision Tables ...

Completeness checking

• Figure total number of rules

Product of number of possible
entries in each column

• Ensure each rule is considered

Consistency checking similar to rule
consistency checking

• Redundancy, overlapping rules

• Contradictory rules

• etc.

03/11/92 V-24

Decision Tables ...
I !

Example: Complete TLC solution (25"6=192
rules)

Appro-

aching
Vehicle

0

Wm_

mg
Ve_c_

0

2Min

Timer

Expires
0

1Min
Tmaer

Exph_s
0

15Sec
T'mae_

EXp',_s
0 1

New

State

0

Change

Light

I 0 0 0 0 1 I 0

0 I 0 0 0 I 3 0

eoe eee eel ooe ooe oo) ooe oe*

Example: Abstract TLC solution (24*3=48
rules)

Appro- Waiting Time In state Current New Change
aching Vehicle Expires < 45 See State State Light
Vehicle

0 0 0 0 1 1 0
| 0 0 0 1 1 0

0 I 0 0

03/11/92 V-25

Decision Tables ...

Number of rules can get very large

Is practical and effective if used on small
modules

Example: Timer module (23 = 8 rules)

Set for Expixed Error
99999

0 0 0

1 0

0 1

0

0

0

pire
True

0

0

9

Set Time

0

0

?

Print

Message

0

0

0

?

0 0 1 0 0 1

1 0 1 0 0 1

0 1 1 ? ?

?

?

?

Class Exercise: Answer the following

• What action do you think should be
in the "question mark" rule entries?

• what does the Timer module actually
do?

03/11/92 V-26

Expert System
Problem V& V

Techniques

Overview

Techniques in this section will be problem
oriented

• will treat solution as a black box

We will not care how the solution is
"coded".

• could be rules, frames, procedural,
mixture

• could be nonmonotonic, case-based,
or just a big decision table

0311 I]92 VI-2

Overview ...

We will be concerned with

1. Is the system based on correct
knowledge ?

2. Does the system adequately solve the
problem ?

3. Does the system satisfy all correctness
objectives such as

safety

user interface

03/11/92 VI-3

Knowledqe Aquisition Correctness

Looking for inconsistencies and "holes" in
knowledge aquired from the expert.

Similar to analyzing system requirements.

Made easier by representing the knowledge
in a consistently structured form.

Example: How does the expert traffic
controller know when to stop and go back
to conventional mode?

03/I 1/92 VI-.4

Minimum Competency Testing12

Certifying the competency of an expert
system by giving it the same test as would
be given to a human expert

Certification exams exist for many types of
human experts.

• CPA

• "MD

• PE

03/11/92 VI-5

Minimum Competency Testing ...

The approach may assume the expert
system will make errors as an expert would
(i.e., not expected to get 100% correct on
the exam)

Expert can be asked to identify what he
would expect a novice, advanced beginner,
etc. to be able to do.

Similar to statistical testing (exam is a
representative sample)

Discussion: What things would be in a
certification test for a new human traffic
controller.

03/11/92 VI-6

Disaster Testinq

Involves identifying scenarios that indicate

potential disaster (during knowledge
aquisition) and guarding against them,

• experts are often good at recognizing
potential disasters

• for most experts, many disaster
situations are "common sense" (this

knowledge must be drawn out)

03/I1192 VI-7

Disaster Testing ...

Tests can specifically be generated to
check that the system recognizes potential
disasters and prevents them from
occuring.

• Can also be used in conjuction with
specification-directed verification
(disaster forms the
specification/constraint).

• Example TLC disaster: two
intersecting directions not allowed to
go at the same time

03/I1/92 VI-8

The expert is the expert.

Some answers can only be judged correct
by the expert.

Expert can check:

• test scenarios

• test results

Expert may not understand implementation
details

03/11/92 VI-9

Expert Review ...

With minimal training, an expert can also
check

• Acquired knowledge

,> Did you hear what he thought he said
?

,, Are there any "holes" or deficiencies
in what he told you ?

• Knowledge base design

,, Is overall problem solving approach
correct ?

,) Was any aquired knowledge
misinterpreted ?

The key to expert review is formatting the
review material so the expert can easily
understand it.

03/I 1/92 VI-lO

Ex licit Modellin 14

Different kinds of models:

• set of equations

• a small scale replica (e.g., toy
airplane model)

• a metaphor (i.e., making analogy)

• any simplified representation of a
system

"Instead of having no models in a KBS,
there are often a multitude of unexpressed

models;"14

03/11/92 VI-11

Ex licit Modellin ...

Different people may each have a different
model for the same system (but should all
be consistent)

• client (e.g., traffic control system)

• user (e.g., traffic light switching
system)

• developer (e.g., state machine)

Helps with V&V by facilitating abstraction

Leads into model-based reasoning18

03/11192 VI- 12

Ex licit Modellin ...

The concept of modelling is
straightforward, practice can be difficult

• Identifying a suitable model

• Mapping the model to the system

• Reasoning about the model

However difficult, it is usually worthwhile

• Models are alway created14. They are
just often implicit (not documented).

• An explicit model can make the
system easier to understand; this
helps all aspects of development and
use.

03/I1/92 VI-13

Explicit Modelling ...

Example: Timer module

• Timers are countdown clocks with
alarms

• Asserting a timer creates a new clock
which begins to count down to zero

• Alarm goes off when the clock counts
down to zero

Example: CLIPS inference engine

• There are 2 lists of rules: KB and

agenda.

• There is a list of facts.

• Each cycle, the inference engine goes
through the KB list and the fact list,
picking rules to put on the agenda.

03/I 1/92 VI-14

Appendix A:
References

References

1. Nguyen, T.A., Perkins,,W.A., Laffey, T.J., Pecora,

D., "Knowledge Base Verification", AI Magazine,

Summer, 1987

2. Nazereth, D.L.. An Analysis of Techniques for

Verification of Logical Correcmess in Rule-Based

Systems. pp. 80-136. Catalog Number 8811167-
05150. UMI Dissertation Service, Ann Arbor, MI

48106, 1988. (Phd. dissertation, Case Western

Reserve University, 1988)

3. NASA/JSC Software Technology Branch, CLIPS

Reference Manual, VoU III, Section 2

Section 2 is the description of the capabilities of
CRSV

4. Booch, G., Software Engineering with Ada,

Benjamin/Cummings, 1983

Chapter 8 discusses type checking in Ada which is

a kind of data consistency checking technique.

03/11/_. VII-2

References ...
II

5. Fikes, R., Kehler, T., "The Role of Frame-Based

Representation in Reasoning", Communications of

the ACM, Sept., 1985

This is a general discussion of frames and their use
in role-based programming. It includes some
discussion on necessary and sufficient conditions
for classifying a frame instance as belonging to a
certain class. This type of necessary and sufficient
condition checking ensures a level of data
consistency.

6. Franklin, W.R., Bansal, R., Gilbert, E., Shroff, G.,

"Debugging and Tracing Expert Systems,
Proceedings of the Twenty-first Annual Hawaii

International Conference on System Sciences, 1988

7. Miller, L.A., "Dynamic Testing of Knowledge

Based Systems Using the Heuristic Testing

Approach", Expert Systems with Applications, Vol.
1, No. 3, 1990

8. "Designing a Solution for the Traffic Light Problem
Using Terms, Operators, and Productions" - This is
the first case study in the Case Studies section.

03111/92 VII-3

References ...

9. Rushby, J., Crow, J., "Evaluation of an Expert

system for Fault Detection, Isolation, and Recovery
in the Manned Maneuvering Unit", Final Report for

NASA contract NAS1-182226 (NASAKANGLET)

10. Montalbano, Decision Tables, Science Research

Associates, 1974

11. Marcus, S., "SALT, A Knowledge Acquisition

Tool That Checks and Helps Test a Knowledge

Base", 1988 AAAI Workshop on Verification,

Validation, and Testing of Knowledge-Based

Systems

12. "Quality Measures and Assurance for AI
Software", This is the last reference in the

references section of this workshop

pp.74-79 includes a discussion of minimum
competency testing

13. McGraw, K.L., Harbison-Briggs, K., Knowledge

Acquisition Principles and Guidelines, Prentice
Hall, 1989

pp. 312-323 includes a discussion of using experts
to aid in review and testing of an expert system

03/1 _/92 VII-4

References ...
il ii

14. Bellman, K.L., "The Modelling Issues Inherent in

Testing and Evaluating Knowledge-Based

Systems", Expert Systems with Applications, Vol 1.,
No. 3

15. Liu, N.K. and Dillon, T.. "An Approach Toward

the Verification of Expert Systems Using

Numerical Petri Nets." International Journal of

Intelligent Systems. Volume 6, Number 3, pp. 255-
276, June 1991.

16. Landauer, C.A.. "Correctness Principles for Rule-

Based Expert Systems." Expert Systems with

Applications. Pergamon Press. Volume 1 Number 3

pp. 291-316, 1990.

17. Becker, S.A. and Medsker, L.. "The Application
of Cleanroom Software Engineering to the

Development of Expert Systems." Heuristics The

Journal of Knowledge Engineering. Quarterly

Journal of the International Association of

Knowledge Engineers (IAKE) Volume 4 Number 3

pp. 31-40, Fall 1991.

18. Weld, D.S., de Kleer, J., eds. Qualitative

Reasoning about Physical Systems, Morgan
Kaufmann, 1990

03111/92 VII-5

Appendix B:
Techniques Vs.

References

Techniques vs. References

Techniques

Rule Consistency Checking

Petri-Nets

Network Rows

Connectivity Graphs

Data Consistency Checking

Sensitivity Analysis

Structural Testing

Specification-Directed Analysis

Decision Tables

Knowledge-Acquisition

Correctness Checking

Minimum Competency Testing

Expert Review

Explicit Modeling

References

1,2

2,15,17

2

16

3,4,5

6

7

8,9

10

11

12

13

14

03/10/92 D-2

Workshop on
Verification and

Validation of Expert
Systems

Part 3: Guidelines

Authors:

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation

3700 Bay Area Blvd.

Houston, TX 77058

Table of contents

L InU-educden

nro Commm Software_ons
Se_ in General ... H.2
Expert Systems/.'LI in P,,...r_cular .. ll-S

HI. Implications for Guidelk_
Overview - -- - ::-........... --:...... ---::::- -....... - 111.2

Couven_mai Validmiou Implics_ion_:---- :--- ::: - --: - :::--:..... -............... nl4
Couveutlomd Vermcmiou Implications ... m-7
Gener_ Ezpert Sylmm V&V Implications:- m.H
F.aWertS_em VaMtio, t ImpUcatio.--_- ::::--:........................... m-12
Expert System Verification Implications :..... : m-13
Otim- Impikatiom : m-14

IV. Guidelias
Overview: :....... IV.2

Project Management Guidehes : IV-3
Problem Analb_ Guidelines ::: : IV-6

Requirements Guidelines .. -........... IV.8
Design Guideline__--::-....... ::::--=-:...... _:-..... __:-:-..................................... IV-10
C_mm'ai Guidelines -........................ -.. IV.12

V&V Technique Guidelines ---: :---:...... -...... -:-........ IV-13
Recommended Approach...--. ... IV-17
Discu_ou.- -........................ -.... IV-23
Exm'__'_ IV-24

V. Appeadix A: Rderences

03/11/92

Introduction

Goals

1. To understand guidelines on the
application of V&V techniques

11 To understand how to V&V a system
which includes expert system(s)

11 To understand how to tailor V&V based
on specific needs and characteristics

03/11/92 I-2

Overview

• Discuss some common misceptions
about software (including expert
systems) "

• Make some inferences about what

should be in a set of expert system
V&V guidelines

• Discuss a set of V&V guidelines

• Discuss tailoring of guidelines

03/I1/92 I-3

Common

Mispercoptions

"9.

Software in eneral:

The only important deliverable of a
software project is the executable version
of the program.

• Software must be understood by its
users.

• Software must be understood by its
maintainers.

• Software must be re-tested as it is

changed.

• Therefore software should be well-

documented and V&V work products

(e.g., test cases) should be saved1

03/11/92 II-2

Software,, in genera. I,,...

Small Prototypes can be scaled up into full-
scale solutions.

• "The heart of the problem is whether
the problem solving method used in a
prototype- which solves only a small
portion of the problem - will scale up

to solve the entire problem"2

• "Building large programs is NOT like
building small ones and software
engineering is different from most

other engineering disciplines."3

03111/92 11-3

Software in eneral ...

Methodical examination of software is too

costly.

° Don't confuse rigor with formality

• "... by understanding what would be
involved in constructing a formal
argument, a programmer can do a far
better job constructing a rigorous
informal one"3

Software can be proved correct

• One can prove certain properties
about software (e.g., the algorithm
never results in deadlock)

• One can not prove a/I aspects of
correctness.

03/11/92]'I-4

Ex ert S stems/Ai in articular:

Expert Systems are Magic.

Expert Systems are quick and easy to build

• "A! entails massive software

engineering."4

• "Software engineering is harder than
you think: I can not emphasize
strongely enough how true this
statement is."4

03/11/92]I-5

Ex ert S stems/AI in articular ...

All "expert systems" are expert systems

• Just because a program is written in
an "expert system language" does
not make it (fully) an expert system.

• Just because a program is written in
a "conventional language" does not
prevent it from being an expert
system

Expert Systems are all "Expert" Systems.

• Most Expert Systems have a
significant amount of conventional
code/function (survey results indicate
at least 45% of the developed system

is conventional5).

03/11/92 II-6

Ex ert S stems/AI in articular ...

The hueristic nature of Expert Systems
make them inherently unreliable.

• They are still predictable.

• They should be as effective as the
hueristic

• They should be safe (i.e., be relied
upon not to create a hazard)

03/11/92 n-7

Ex ert S stems/AI in articular ...

Learning an Expert System shell is all we
need to know about Expert Systems.

• Knowledge representation (i.e.,
language) is key to expert systems
and V&V of them

• Knowledge aquistition, reasoning
paradigms, and software engineering
are also needed skills

)> Domain engineer: knowledge
centered

,) System engineer: computer centered

03/II/92 II-8

Implications for
Guidelines

Overview

So far we have:

• Reviewed conventional and expert
system V&V techniques

• Pointed out key V&V ideas (e.g., the
V&V puzzle)

• Studied a sample problem (traffic
light controller)

03/11/92 ITI-2

'2

Overview ...

From this, we can make some inferences
about what should be in a set of ES V&V

standards and guidelines.

From these inferences, we can

• Develop a set of ES V&V guidelines

• Develop some tailoring criteria

Note: Many implications may seem trivial
but they lead to important guidelines.

03/I1/92 m-3

4'

Conventional Validation Im lications

Validation: "Am I building the right
product?"

• Must be able to know if a product is
right or not

• There must be some known criteria

that the right product will satisfy

03/11/92 m-4

Conventional Validation Im lications

mmm
imm

Verification Puzzle: Different kinds of
correctness

• Must know which kinds of

correctness are important

,) Utility Correctness at a minumum
(satisfies user's needs)

• Must know user's needs

• Should check that the understanding
of problem to be solved is both
complete and consistent

• May tailor V&V based on size,
complexity and criticality

• Must pick the V&V techniques to fit
the puzzle

03/I1/92 m-5

b

Conventional Validation

Black Box View: Based on observable
behavior

• Must be able to validate correctness

based on observable response from
known stimulus

>)Can not validate system just by
seeing that correct knowledge went
into it

Operational Scenarios: Stimulus/response
descriptions based on how the system is
expected to be used

• User can describe how he expects to
use the system and developer can
obtain stimulus/response from the
user's description(s)

03/I1/92 m-6

Conventional Verification
I I

Prototypina: Early model of possible
system

• Understanding of the desired system
can be validated before system
development begins

Verification Puzzle: Comprehensive
validation of large complex systems is too
difficult, but system can be "incrementally
validated" by performing separate, static,
unit/integration, and system testing

• Verification greatly reduces the
difficulty of validation

03/I1/92 III-7

Conventional Verification
ii

Medfication: "Am I building the system
right ?"

• Must know/understand the system
that is being built

• Must know how the system is to be
built (i.e., need design)

Modularity: Structured "divide and
conquer" approach has many benefits

• System should be modularized to
reduce the verification effort

03/I1/92 I.H-8

Conventional Verification

Different Techniques catch different types
of problems and none are comprehensive

• Mutliple V&V techniques must be
used

The earlier an error is found, the more
cheaply it can be fixed.

• Emphasize techniques which can be
applied early

• Perform verification as early as
practical

03/11/92 m-9

Conventional Verification

Techniques work at different levels (e.g.,
static analysis vs. statistical testing)

° Verification should be planned so
that techniques are applied when and
where they are appropriate

Static testing techniques work at many
different levels and can be applied early

• These techniques are important

Abstraction, refinement, and proper
documentation ease the application of
static testing techniques

• Design should use abstraction,
refinement, and associated
documentation (e.g., specifications)

03/11/92 m-lO

General Ex ert S stem V&V

Expert systems are software

• Same basic conventional V&V

implications hold for expert systems

Expert Systems may satisfy some, but not
all, implementation and problem
characteristics

. Verification approach must be
tailored for the specific type of expert
system being built

03/11/92 III-11

Ex ert S stem Validation

May just mechanically apply expert's "rules
of thumb" (as opposed to solving a
problem)

• Validation must rely on comparison
with the expert

May solve a very difficult problem (e.g.,
complex scheduling) where correct
solutions are not known

• Validation may be able to only
address "reasonableness" of

solutions (e.g., feasible schedule)

May solve a problem with only fuzzy or
subjectively correct answers

• Each test result must be checked by

an expert

03/I1/92 III-12

Ex ert S stem Verification

Internal interactions may be unclear and/or
complex

• Manual analysis may be very difficult
(i.e., inspections)

Execution sequence may not be explicit

• Verification of problem solving
method may be very difficult

Expert Systems often built iteratively (in
small chunks)

• Testing should be iterative (to catch
errors early)

• Regression testing will be done often

03/11/92 rrl-13

Other (Common Sense) Implications

There is no way to know if the system will
meet the user's needs without doing
something that would be called V&V.

• V&V must be done

V&V takes time (and money)

° Development schedule and cost
should account for V&V

The best person to determine correctness
is the expert

• The expert should be involved in V&V

A "fresh look" can often find errors better

° Independent (unbiased) V&V should
be done if practical

03/11/92 m-14

9.;

I.

Guidelines

Overview

The implications for V&V directly lead to
some specific guidelines which will be
discussed first.

Based on the guildelines,
recommendations for how to develop a
V&V approach will be discussed.

Finally, you will have the opportunity to
practice developing a V&V approach on a
case project.

03/11/92 IV-2

Project Management Guidelines

Plan for V&V

• Include V&V in schedule (e.g.,
inspections)

• Include V&V cost in total

development cost (typical V&V cost is
25% of total project cost, spread
throughout the development cycle)

• Allocate resources for V&V (e.g.,
expert's time)

Plan to spend time developing a good
design (so static testing won't be too hard)

03/11/92 W-3

ProjectManagement Guidelines ...

Pick a Life-cycle that includes all 3 test

phases (and follow it).

• Standardizing on a life-cycle aids in
planning and management of V&V.

Tailor V&V approach based on:

1.Expected size and complexity

2.Type of expert system (based on
characteristics)

3.Types of correctness that matter

03/I1/92 IV-4

Project Management Guidelines ...

Use Configuration Management

• Ensure system is correctly integrated

• Ensure testers know what they are
testing (e.g., version control)

• Helps manage the effects of complex
internal interactions

Reserve a significant portion of the
expert's time for helping with V&V (25%).

Prototype for early validation but clearly
separate prototyping from development

Plan to do V&V as the system is iteratively
developed (not all at the end).

03/I1/92 IV-5

.........Problem Anal sis Guidelines

Try to narrow the problem domain as much
as possible

• "Knowledge based systems have a
greater likelihood of succeeding -
and, in a sense, of being valid - when
they address a narrowly defined

problem."8

• "If an expert system starts with vague
objectives, some may conclude that it
doesn't matter what the eventual

system does, because anything is
better than nothing. '°7

03/I1/92 IV-6

Problem Analysis Guidelines ...

Do not try to pre-determine whether the
solution will be an "expert system" or not.

Expect .the System to work

• Survey results indicated a significant
percentage did not expect the Expert
System to be as accurate as the

expert5

• "The difficulty with low expectations

is that they become self-fulfilling"3

03/11/92 rv-'l

Re uirements Guidelines

Write Requirements.

• Something is needed to V&V the
system against.

,, "A good programmer understands
what his program is supposed to do
and why he expects his program to
do it"3

Document the following (at a minimum):

• expected behavior

• operational scenarios (how the
system is expected to be used)

03/11/92 IV-8

Re uirements Guidelines ...

Consider each kind of correctness when

writing requirements.

1. Functional

2. Safety

3. User-Interface

4. Resource Consumption

5. Utility

03/I1/92 IV-9

Desi n Guidelines

Design modular systems

• Modules can be V&V'ed separately

• V&V of many little systems is easier
than V&V of one large system

• Reduces regression testing

Use abstraction and refinement

• Makes static testing easier

• Allows verification during design

Cross reference design to requirements
and code

• Facilitates completeness checking

03/I1/92 IV-lO

Desi n Guidelines ...

Some design hints

• Pick a design notation and stick with
it across the application (needed to
verify consistency).

• The Level of Formalism is NOT as
important as the consistency of
Formalism

)> "1 will contend that conceptual
integrity is the most important
consideration in system design. It is
better to have a system ... reflect one
set of design ideas, than to have one
that contains many good but
independent and uncoordinated
ideas"- Fred Books6

03/11/92
IV-II

General Guidelines

Consider an independent group for final
V&V, or at least try to include some
independent reviews

• A "fresh look" often finds additional
errors

° Will help determine if system is
adequately documented

Always try to find as many errors as early
as possible

• Errors found early are much cheaper
to correct

Use a mixture of V&V techniques

• There is no single comprehensive
technique

03/11/92 IV- 12

I}.

V&V Techni ue Guidelines

During integration of large systems, test
higher level control and user-interface
functions first (stubbing out lower level
details if necessary)

Perform regression testing at each iteration

• Emphasize modules that changed

• Perform "health test" of overall
system

03/11/92 IV-13

=

V&V Technique Guidelines ...

Emphasize static testing techniques for
evaluation of detailed functional
correctness

• Based on design notation/formalism,
write design specifications and
perform specification-directed
analysis

• If rule-based implementation, perform
rule consistency checking

• Use data-consistency checking,
especially if implementation is frame-
based,

• If developing a classification-type
expert system, perform sensitivity
analysis to evaluate sensitivity of
classes to distiguishing criteria

03/11/92 IV-14

V&V Technique Guidelines ...

Use realistic testing for evaluating utility
and user-interface correctness

• Will the system satisfy the user needs
based on how they plan to (would like
to) use the system ?

Selectively choose test cases for testing
functional correctness (do not attempt to
be comprehensive, as in static testing)

• Emphasize critical and complex
functions

• Randomly exercise other functions

03/11/92 IV-15

V&V Technique G.uidelines ...

Use stress/performance testing to evaluate
resource consumption correctness

After selective testing, measure coverage
and look for major "holes" in coverage
(rules not covered, facts not used etc),

03/11/92 IV- 16

Recommended A roach

1;Analyze Problem (ongoing activity)

• Identify areas of uncertainty and/or
complexity that may require
prototyping

• Identify areas of high criticality

• Identify available expertise

,, Is problem to be solved by
knowledge acquisition or analysis ?

• Identify/document expected behavior
and operational scenarios

• Identify aspects of problem that
match expert system criteria, but do
not anticipate expert system
implementation.

03/11/92 IV-17

Recommended A roach ...

2. Do initial planning

• Do not attempt comprehensive up-
front planning.

True expert systems are usually
developed in a highly iterative
manner

• Determine objectives for next
iteration.

° Determine criticality of correctness.

• Estimate size and cost (include V&V).

,, If V&V is listed as separate cost, it is
in danger of being "cut"

• Define milestones that follow a life-

cycle.

03/11/92 IV- 18

Recommended A roach ...

2.Do initial planning ...

• Reserve resources

)> Expert's time

)> Consider identifying IV&V group

)) Look for available V&V tools

(especially those that assist an

expert5)

Ensure"

,> Problem is not too broadly defined

,) Adequate requirements exist / will
exist

03/11/92 IV-19

Recommended A roach ...

3.Perform design and specification-driven
analysis

• As each module is refined/completed,
verify functional correctness and
completeness.

• Always map back to higher level
design, requirement, prototype, or
problem description.

• Hold periodic inspections and involve
expert(s).

• Based on implementation approach,
use additional static testing
techniques (e.g., rule consistency
checking)

03111/92 IV-20

Recommended A roach ...

4. As each increment is completed

• Test overall execution (high level
control) e.g.,

,> Screens/windows look OK

_>Files opened/closed correctly

Functions respond to appropriate
user inputs

,, Output appears in the right place

03/11/92 IV-21

Recommended Approach ...

4.As each increment is completed ...

• Perform realistic and/or statistical

testing

• Perform stress testing

° Measure coverage and look for
"holes"

° Regression test unchanged features

° Perform field testing with user's and

experts

03/I1/92 IV-22

Discussion

As a class discussion exercise, develop a
V&V plan and approach for the Traffic Light
Controller problem.

1. Discuss initial planning issues

2.Discuss additional requirements that
are needed

3.Discuss additional testing that is
needed

03/I 1/92 IV-23

Exercise

For your case study problem (5-10 min. for
each step):

1 .Analyze the problem

2.Do initial planning

3.Pick a general implementation
approach.

4.Develop a very high level design
(including specifications) and trace
back to problem statement (may be
only for a piece of the total problem)

03/I1/92

5. Generate an argument for the
completeness and correctness of the
very high level design.

Dr'-24

Exercise ...

Then, trade problems with another group
and for your new problem, continue to:

6. Generate a realistic set of test
scenarios

7. Describe additional types of testing
that are needed

03/11/92 IV-25

Appendix A:
References

References

1. Pamas, D.L., Clements, P.C., "A Rational Design

Process: How and Why to Fake It", IEEE

Transactions on Software Engineering, Feb., 1986

Describes why one would wish to document a

product as if it were designed according to an

idealized development process/methodology, even

if was developed in a very ad-hoc manner. Also

includes suggestions on what the documentation of
a product should contain.

2. Fox, M.S., "AI and Expert System Myths, Legends,

and Facts", IEEE Expert, Feb., 1990

Contains personal observations by the author that

help expain some causes of ineffective AI

applications; many are due to a misunderstanding

of AI technology.

3. Guttag, J.V., "Why Programming is Too Hard and

What to Do About It", Research Directions in

Computer Science: An MIT Perspective, MIT Press,
1991

Contains personal observations by the author on the

difficulties in software programs. The author, a

respected professor and researcher in software

03/11/92 V-2

development techniques, offers some very candid

opinions in thi-'gpaper.

03/11t92 V-3

References ...
i

4. Schank, R.C., "Where's the AI ?", A/Magazine,
Winter 1991

A very readable description of some personal
observations by the author on some difficulties in

developing truly intelligent systems. This article is
highly recommended reading.

5 "KBS V&V - State of the Practice and Implications
for V&V Standards"

This paper is included in the references section. It

summarizes a survey that was performed of 60

expert system projects to determine what techniques

were currently being used to V&V expert systems

and what difficulties were being encountered.

6. Brooks, F., The Mythical Man Month, Addison-

Wesley, 1975

The classic book on software engineering. It is a
collection of personal observations on software
development. Although the book is many years old,

the observations are just as true today as they were

15 years ago. This book is very highly

recommended reading.

03/11/92 V-4

References
i

ummmm

7. Geissman, James R.. "Verification and Validation

for Expert Systems: A Practical Methodology."

Abacus Programmin" g Corporation, Van Nuys, CA.,

SOAR Conference, 1990 (?77)

8. Marcot, Bruce. "Testing Your Knowledge Base."

AI Expert, July 1987

This article offers some practical advice for testing

knowledge bases by listing some very general

guidelines. It also has a good detailed list of types
of correctness.

9. Hall, A., "Seven Myths of Formal Methods", IEEE

Software, September, 1990

03111/92 V-5

References ...
I

10. Bundy, Alan. "How to Improve the Reliability of

Expert Systems." Proceedings of Expert Systems

"87: Seventh Annual Technical Conference of the

Pontish Computer Society Specialist Group on

Expert Systems. December 1989, pp. 3-17.

11. Culbert, Chris. "Knowledge-Based Systems

Verification and Validation." The Verification and

Validation of Expert Systems Workshop. Austin,
TX, June 18, 1991.

12. Froscher, Judith N., Jacob, Robert J.K.. "A

Software Engineering Methodology for Rule-Based

Systems." IEEE Transactions on Knowledge

Engineering Volume 2. No. 2, pp. 173-189, June
1990.

13. The Institute of Electrical and Electronics

Engineers (IEEE). "IEEE Standard Glossary of

Software Engineering Terminology." ANSI/IEEE

Std. 729-1983. 345 E. 47th Street, New York, NY,

February 18, 1983.

14. Waterman, Donald A.. A Guide to Expert

Systems, Addison-Wesley Publishing Company,

1986, pg. 187.

03/11/92 V-6

Workshop Handout #1

Jd

Workshop Handout #1

Pmceduxe Tnd__Contmner
Is

..<*

- The Trat_ ¢vcmfl_ uses the nodon of a Timer to detemtine

- when to change the flow of uaff¢. P.ach fime¢ _

- a w/ndow in t_ne beg/nni_ zt the curt-era clock dine plus mine
- some delta.

2_bfinme T'nner, l_bfmme_Thne_, 15_Second Time_: Thner;

..<*

- Returns TRUE when tra_ is approad_g in the ¢unu_ _
- af mfl_ iiow at the cunua clock time
- ELSE-> PAI.SE

_*>

Appmadffik_Tnfl_ Reun_ (True,False);

- Returns TRUE whm _ (amo orpedemian) requests a
- change in the light at fin cummt dock _-e
- ELSE-> FALSE
_*>

Wak_Signal_Received Remm frme, False);

..<*

- Remms the am_uzt time
_*>

Fqmcti_ Clo_k Remm Tune;

_<*

- ReUmu TRUE when the cm_lmt clo_ lhne ez_e_ the tlme

- specifiedbytheT',_
- I_._E -> FALSE
_*>

r_c_n _: In T'_) _ (T_e, False);

- Switch from the cummt dizecdon of wat_ flow to the _
_*>

<ednxe Sw In Out Light);

2

Workshop Handout #1

State : _ State of the Trd_ Con_11er

Poaiblc s_ th_ Tmt_ CommIi_ c_mb¢ in ate:
_m__l : 2M_T'ffi_r .---CIo_+2 Mimm_

NS-Li_ := Cav_
$__2 :2M_T'm_¢_Is

NS-Li_.--- _
C__by 1_ond

Su__3 : 1M_Tim¢_ .---Clock+l
15$_Timcz .---C_c.k+15 S_cmds
N$-Ligt_ .---Cav_

Sty_4 :NS-Li_ .---C_

State_5 : N$-Lig_ _ Gmea
1M_T'nner
1.f__T'=ner.---Cloc.k+15 Seconds

State_6 : N$-Lig_ .---R_
2M_T'm_ := _ock+2 _fmu_s

State .---Suee_l;
Loop

Case Sure Is
When in mze_l =>_ s_e_l
When in state_2 -._ _ state_2 transitions

When in state_n =o, _ state_n u'ansificm
End Case;

End Loop;

End Tr_v___,

3

Workshop Handout #1

_<*

- Stme_l Tnmsifia_

.o

Troth Table:

W__Tr_r_ Appro_=g_Tr_ s_s_
T T 1.3
T F 1.3

- F T 1.1

- F F 1.2

_*>

<* 1.1 *> When $u__1 Aud (Appmad=ag_Trzff_ And
NOT Wa_g..Trat_) =>

S_ :ffiSta__l;
<* 1.2 *> When $mm_l And (NOT A_mm_t_=mg_T_ And

NOTWaifi__Tmt_ And =>
Smm :ffiSmm_2;

<* 1.3 *> Wlma Smm_l And (Waifing_Tr_c) =>
Slam :: Sta__3;

_<*

- Eud S__IT_
_*>

4

Workshop Handout #I

Aemm_im_ : Oa_ w_ing _IF_ is _ _ of

..._Ik

- Sutm_2 T_

- Troth Table:

- w, atina.TrUac
-2.3 T T T

-2.3 T F T

-2.3 F T T
-2.3 F F T

- 2.4 T T F

- 2.4 T F F

-2.2 F T F

- 2.1 F F F

Agpro_b__Tne_ ezpin_

w_ happem when mcomi_ _ is_ z the=act

- same dinethetimerm;pin_?
_*>

' 2.1 * Wimn Siam_2 And (NOT App_oad_TraiF_ And
NOT W_iag_Tr_6¢ And
NOT Rxt_2M_Tm_)) =>

State:=Sume__

<* 2.2 *> Whm Sunz_2 And (NOT Wailflsg_TralYac And
NOT _2M_Tim_) And
Ap_o_.Trz_fic)) -->

Suuz := Sums_l;

<" Z3 *> When Suze_2 And _2M Timer)) =>
Sin= ._S__e,,

<* 2.4 *> Whm Sl_e_2 And ('Wa_ag_Tr_ac And
NOT_(2bl_T_mer)) =>

Su._ .---S__3;
..<*

- ProdS_te_2 T_

5

Workshop Handout #1

..<4'

Trath Table:

6

Workshop Handout #1

..<*

- State_4 Tmuifiom

m

N

- Troth Table:

f

- 4.4. T

- 4.4 T

- 4.4 F
- 4.4 F
- 4.2 T

- 4.3 T
- 4.2 F
- 4.1 F

Ira,

_ _: Once waiting tra_ is detected detecfi_ of
_ uaf_ is _ant

Approach/nLTm/_ 155_T'm_r F.._ired 1M T'm_r
T T

F T

T T

F T

T F

F F

T F

F F

What happens when the cmcoming wd_ is detected ffi the
effiact same :ime the the timer ezpi_?

*

<* 4.1 *> When State_4 And (NOT Expired(l$S_Timer) A.ad
NOT Kxpin_lM_T'_a¢_) And
NOTAppte ,_T:a)) =>

State .'_ Stm_4;

<* 4.2 *> When Sine_4 And (NOT _d(llVl T'm_:') And

Ezpked(155_T'an¢_)) =>
State := Su__6;,

<* 4_3 *> When Stare_4 And (Appmadfiag_Tmlr3c And

NOT Kffipm_lM_T--=) And

NOT _15S_T',m_r)) =>
State := Sm__5;

<* 4.4*> When Stm__4 And (_IM_T--cr)) -->
State := State_6;

_<*

- End State..4 Transitions

7

Workshop Handout #1

- Su__5 T_

_ _:_ffi_y_farttw 1_ T',,,,ato
_ _pim _ _ same t_,e it is _

- Troth Table:

A_mm:lm_LTrat_ 1M_Timffi
- 5.1 T T
- 5.2 T F
- 5.1 F T
- 53 F F
_*>

<* 5.1 *> Whm Sine_5 And (Expi_l(1M_Txmcr))
Sm_ _ Su__6;

<* 5_ *> When Stun_5 And _nd_ag_Tr_ And
NOTEzpi_(IM_Tim_)) =>

State .---Sty_5;
<* 5.3 *> Whm _me_5 And (NOT A__._Trat_ And

NOT l_3_d(1M_T'mer)) =>
State := Sums_4;

-._

- End Sum__$ T_
_*>

$

Workshop Handout #2

(deffac_ iaisial-facts

(SreeaNS 0)
(time1)
(_ _ oar370)
(_ EWoar400)
(_ NSc_ 42O)

(_ _ _ 450)
(_ _rScar46O)
(siipaalNScar470)
(_ _ o_r480)
(_ NSear490)
(s_aal_ c_ 500)

(defOe updat_time (dec.lm_(salienoe-1))
?fl <- (time_)

(reuac¢?fl)
(assert(time=(+ ?t 1)))

)

(defa'uleu:iuer-si_-.c_m./_
?da'ecrion7)

(t_e .'_)
(sisnaT?eeher_direcrion?.'_)(tesz(neq?d/rec__ra?eeher__))

(_ (s_ud_ ._))
)

(_e del-old<hu_,a_
<- (si_-chanses ?d0

(test (> (- _ ?d_)120))
-_.>

)

Workshop Handout #2

(defmle lxigger-signal-de.lay

(time _)

-_>

(asse_ (signat-dehy _))
)

(_ del_
._ <- (sig_-de_ ?ch)
(time ._)
(test (> (- ._ ?d0 15))

(remu=._)
)

(d_ c_mng_o-sdg_
?fl <-(gn_ ?_ ?last_changed)
(time _)
(u_ (>= ._ (+ ?__chang_ 12o)))
(not (signal_ ?))
(not (signal-change?))

(rem_ ?fl)
(if (eq ?_ NS) them(bind?other direction

else (bind ?other__ NS))
(assert(green?other direction_))
(flaimom t "gn_" ?other_direction"(no sig_) az"_ cztf)

)

2

Workshop Handout #2

(defzalechmge-no-de_
?fl <- (gn_ ?dimcti_ ._l_t_changed)
(time ?t)
?e2<. (s_nal_ ?sg)
(not (_0al-de_ ?))
(test(>= _ (+ ?sg 15)))

ffi>

(reu_ ?fl ._2)
(_ (eq ?_ Ns) then(bind ?oct_-_d_r_:_m

else (bind?othffi__ NS))
(a.mn (green?omffi_c_._:t__))
(fp_tout _ "greta" ?om___" (nodday) at" _ cflf)

)

(defOe c_ge-de_
._ <- (g_em ?_ ?l__chmged)
(time _)
?f2<-(_-ch_e ?sg)

(test (>= ?t (+ ?_ 60)))

(retract._ ._ ._3)
(if (eq ?'daectionNS) thin (bind ?ofl_r_diw._i_

else (bind?oth_ d_'ec_mN'S))
(a._n (green?och__diz_c_on_))
(flxintoutt "green" ?oth___oa" (de_y) at" _ c_

(de,re s_,pit
(time _)
(end._)
(test (>= _ ._))

(halt)
)

3

Workshop Handout #3

ch_,e_ao_d_y

__time

t:____ctmge

del_okL_

=igg_r__,jl_de_

d__o__de_x_

dme_+l

_l.d_ecdon=gem_d/rectim

___ + I_ '___

dgnal=geen_dkecdcm

',,__detay

__l_o_d_

qnal delay=_
tim_

last__e

h_ changed=eme
time> __dumge+15

fime=:t+l

de__cad__

del_old__
__no_s_l
dmSe_no_de_y
epdate_time

m

,ie.3_okt_det_

__no_de.I_

c/mge_no__ml

Workshop Handout #4

Can you detect any errors in the structure shown above?

1

Workshop Handout #5

- Sim S_ so Trat_ Ligl_ Camm_IlexProMem
_m.

I i I i m
$

;;;Priorifi_ -2 : for updaxingthe _imex
;;; -1 : for things n_t a_ tl_ ¢=d of each cyde

•_; 0 : f_ om if fl_elig_ need _obe changed

Workshop Handout #5

QeQeeoe • oeoo_eDee*eQeQooeeoo• oeeeeeQo_ote Qeo6oB*too_oooee.o*Qeo*e

e*°

;;; _ mocNle
Qo*
t_9

;;; _ lime e,om_ _ ¢_10/inch cycle
eeQ

_gt

(def'u_)l_e time
(_.ld _ (type NUMBER))

)

(_ fime_fa_

(time (is 0))
(stop-time 600)

)

; Tramitio_

;< update time as the end of each cyde >
;<* time := time + 1 *>

((_ale count_dine (declare (mlimce -2))
.'_ <- (thne (is _))

--_>

(modify ?fl (is _+ ._ 1)))
)

;<haltwhen swp time:e_.hed>

(defmle=ol_
(smp-ume._)
(,'_e (is ?t))

(ha_x)
)

2

Workshop Handout #5

Anow _mezs _obe asse:_ md figme om when _ ¢zpire.
Usage: Ass_ a time called some name and se: for some _ime.

Wl_ _ha¢time has _ the r_er w_ have the

; Sm_ D_ta

; Model: Tuner is a commtown timer time coanm down _ time

(f_:l called(tYl_ .'.'._ARI,_I.£))

(fx_]n___ (_nc,_d-_s "n_ _.A._ (dg_LV__._,._)
; I_
(fieLdcz_ (tyPe__.) (d_t 99999))

; _: set_for> 0

(defOe fimer_a_rc_
(_mer (called ._une) (s__for ?st'))
(_ (<= ?s_0))

-_.>

(fN:_o_: "nM__]_u_ol_ - ?namec=lf)
)

k __

Workshop Handout #5

; Consu-aim:mdy one l_mcrof agiven name
; This is resolved be dele_g oldest timer.

(de_'_ _ner_nm_
?fl <- (,;,,,er (caned ._a_) (e:q_s_a_ ?ca-l))

(tim= (caLled.'/name)(expi:es_a_?ca-2))
(_ (< ?ca-1 ?ca-2))

=> (mn-_x?fl)
)

;_ e_gh-__E.-=ti-,e + se:_for

; Tnnsifiom

.W1<-(timer(expinm_at99999)(set_fo_?sf))
Oime(/s?0)

=>

(modifym (=gires_,_=(+?sf._)))
)

;<im_m_ _mcrIres=pimfl>
(d_ _mcr__g_d
?n <-(_m_ (=_rm_z ?_) 0___ FALSE))
(.me(e._))
(_ (<=?_ ._))

=>

(modify?n Om,_=pircdTRUe)
)

4

°, o

Workshop Handout #5

; Su_D_

(_ ___

(signal_dma NS car 370)

(___a EW car4OO)
(sigaal_dma NS c_ 420)

(___ _w un 425)
(signaldata EW car 450)

(_gnal_d_a HS c_ 460)
(sis__dm NS car4"7'0)
(_n___a NS ¢=z48O)
(signal_dataNS car490)
(sig__data NS car500)

;Modet: Signg_dm is a U= of signg_namesanddines;,
; d_e rlme indicates when the sisnal w_l be simulated

(__
(fieJd in_dizecean (anowed-w=ds _ Ew))
(field _=n=Lby (allowed-words=¢ pede=zh=0)

)

; Ccmsuai=:none

; Initial: nene

5

Workshop Handout #5

; Transiziam

;< auen _nal >
(def_de we___
(siva_din ?direcams _ ._me)
(time (is .'aime))

(_led_by ?,ype)
)))

;< zetz_ _ml at end of cVde >
(clarke reev___ (decL_ (ut_ce -1))
._ <- (_ (m_direcaon ?dizeeaon) (s_mned_by ?_e))

)

6

Workshop Handout #5

; Ii_ll:

nm-Ul* : NS

)

;_(ms

(c_=,,:tm c_--]._ 0
(m=._ (u_-ci_sed))
(if (_ .?*_gw_-]J_:*_rs) _b=

eJsc
(b_ ?*S:,_li_* 1_)
Coi_ Vr_-_h_ _V)

))

;< _1__ f_ _ :d ofcycle>
(,k_.m_-_-]J__ (_ctm (s_:_-;))

:>

)

7

Workshop Handout #5

;;; P_oblcm So]v_ M_od

;;; Tt_ ligi_ is _ when any timer ¢_pires.
ee.

g

Workshop Handout #5

; Omstmm

?*long-_e* = 120
?*medimn-thne* - 60

_short-dme* - 15

)

;Initial

(ddfacts u'a/__li_t_osm'ol_-facts

(tim_ (caned long) (s_._for .?*long-._))

; Tmmitions

;<light-ckmgedoraggoaching tmffz -> se longlime">

(defroleset-long-timex-
(or(lig__

(-_$n_(m_d_m ?_:(eq ?dire___on._-t_)))
)

(assert(timer(calledlong)(sex_for_long-ume*)))
)

;<signaltochangetheligig->setmedium and shortfimms >
(defraleset-med/um-dmer

(si$_ (in__ ?direc_on&:(eq?dire_on ?*md-ligbe)))
----3>

(assext (tim_ (called short) (set_f_r .?*sh_-time_')))
(asse_ (tim_ (called medium) (set for .'_'medium-tim_)))

)

9

Workshop Handout #'5

;< qq_'oact_g u'a/_ detea_ and medinm dmer exis_
; -> reset short timer >

(defrule n_s_-shon-time_
(sigml (in__ ?_:(eq ?direction .?*grem-lig_)))
(tim_ (caned m,_mm))

=>

(ass_ (e,,_ (_m_dsh_) (s_._for._sho_-,-_,e')))
)

;< tim=r,_ams -> _e _ >
(defm_ ,_,,___vims

(timer(t___pimd TRUE))
(time (is _))

(chans_---_)
(flY, outt "changetisht at"_ ""._r,_m-Ugh_

)

;< lisht changed -> retract medium andsho.times >
(de.ale_n=_um_m_

?fl<-(_ner(call_me_un))
?f2<-(tim_(calledsho_))

=>

(_ .w1?f2)
)

IO

Workshop Handout #6

c:¢mm_time time_ time:_'=l

stop_ix time=_p_eme (halt)

tim__expized dmer.ezpires_at=time _.has_e_ed=TRUE

E_s_nal s_xml_datLat_tim_time signal=?direaim
signaL_data=?dim_cn

ream__

__li__changed __changea ^light_changed

set..Icmg_timer i__dumged ¢_
sign,=green_tight

e.emer.e_es_at
=_ae+120

se__mediam_fima" sbm__n___E
=s_-.,i-l$

m_zn__mer.e_s_at
=t_ner+60

sis____ and

__ma:lium_tim_ Amedimn_'dme_, ,'_m't_t_kner

,¢,,,,er_expir_ timer.has_exph_l=TRUE

stop_it
lisht____e

asse_j_:nal

Workshop Handout #6

tim_r__pix_l

2

Workshop Handout #6

m__sis_

r_x_sig_

set_medimn_dmer

rese__shon_dm_

se__lo.g_dm_
se__medium_dmer
res__sh.e__me_

dmer_expires

em=__q_es

__U__ch_sed
setJoag_dmer
medium_dmer

3

Workshop Handout #7

Workshop Handout #8

Introduotion

The purpose of this handout is to examine the benefits of applying con_ graph analysis
to the two CLIPS rule-bases generated for the traffic controller problem. Please refer to

Landuaer (reference number 16 in Part 2 of the Presentation Material) for more complete
desoriptions of this approach. Nazareth (reference number 2 in Part 2 of the Presentation
Material) also provides some of the more theoretical foundations for similar work in directed

graphs (i.e., network flow). The first step in applying connectivity graphing techniques is to
generate a complete list of rules and facts (this handout will only consider facts; other items
such as clauses could be considered). Tables 1 and 2 on pages 2 and 3 show these lists from
the first CLIPS implementation of the traffic controller problem.

Tables 3 and 4 on pages 4 and 5 show the lists of rules and facts from the second CLIPS

implementation of the traffic controller problem. In general, whether building these
connectivity graphs or not, generating a list of facts and rules can be very helpful in avoiding
redundancies.

1 Handout #8

Identifier
i

R1

R2

R3

R4

RS

R6

R7

RS

R9

Table 1:

Rule-Name

UpdateTime

Trlgger_SlgnaLChange

DeLOId_Changu

Trigger_SignaLDelay

DeLOId_Delays

Change_No_Signal

Change_No_Delay

Change_Delay

Stoplt

List of Rules from the Non-Modular Traffic Controller

CLIPS Implementation

2 Handout #8

Identifier

F1

F2

F3

F4

FS

FS

F7

Table 2:

Facts

tim ?t

green ?direction ?

signal ?other-direction ? ?t

signaLchanges ?dt

slgnaLchange ?t

signaLdelay ?dt

end ?t

Facts from the non-Modular Traffic Controller CLIPS

Implementation

3 Handout #8

Identifier
ill

R1

R2

R3

R4

RS

R6

R7

RS

Table 3:

R9

R10

Rll

R12

R13

R14

if

Rule Names

Count_Time

Stoplt

Timer_Error

Tlmer_Name_Confllct

Inltlallze Explres At

Tlmer Explred

Assert_Slgnal

Retract Slgnal

Retract_Light_Changed

SeLLonLTimer

SeLMedlum_Timer

Reset_Short_Timer

Timer_Expires

Retract_Medium_Timer

List of Rules from Modular Traffic Controller

Implementation

4 Handout#8

Identifier

F1

F2

F3

F4

Table 4:

FS

FS

Facts

time (is ?t)

stop _me ?t

timer (called ?) (set_for ?) (has_expired ?)

signal (in.direction ?) (signalledby ?)

light_changed

sigrmLclata ? ? ?

List of Facts from Modular Traffic Controller

Implementation

Generating Connectivity Graphs

Based on these tables, connectivity matrices can be generated. These matrices are good for
examining a knowledge base to see how "interrelated" things are. Tables 5 and 6 on pages 7
and 8 show connectivity matrices derived from the fact and rule lists. These matrices are built
by placing a I in each slot where a given fact is used on either the right or left hand side of the
rule. A 0 in a given slot indicates that a particular rule does not reference the related fact.
The equations of interest for tables 5 and 6 are:

• (RF TR) * (RF)

• (RF) * (RF TR)

where (RF) is the initial Rule\Fact matrix and (RF TR) is the transpose of that
matrix (i.e., creating a matrix by making the rows into columns and vice

versa)

5 Handout #8

The first equation shown generates a matrix that shows, given an ordered pair of facts (fi, fj),

whether a particular rule references both facts fi and fj (i.e., facts fi and fj have commonality).

A graph can be generated based on this matrix where facts serve as the vertices of the graph
and rules serve as the edges that connect these The second equation generates a similar

matrix that shows, given any ordered pair of rules, (ri, rj), whether a particular fact is common

to rules r_ and rj. An undirected graph can also be generated from this matrix where the rules
serve as vertices and the facts as edges.

Analyzing Connectivity Graphs

What can be learned about the two implementations of the traffic controller problem from
these matrices? As it turns out, these matrices provide some important dues that can be
used to assess the design of the two different implementations. To see these clues begin by
consldedng the matrix generated from the ad-hoc CUPS implementation (see Table 7 on
page 9). As stated earlier, an undirected graph can be drawn based on the generated matrix
where rules act as the vertices. Drawing a graph from the matrix in Table 7 generates, as
expected, a very complex sedas of interactions. In fact, there is at least one edge between
every rule and every other rule. This means that every rule has one or more facts in common
with all other rules. Clearly, this would be a more difficult rule-base to analyze because of all
these interactions.

What can be learned using the matrix generated from the modular CLIPS implementation?
The matrix should show that this implementation is easier to analyze. In fact, the matrix of
Table 8 on page 10 clearly shows a simpler connectivity structure as evidenced by the number
of zeroes in the matrix (i.e., there are fewer edges in the graph). In addition, the matrix of
Table 8 highlights the modules defined in the design (i.e., areas where higher numbers are
clustered; e.g., the boxes in the inner portion of the matrix in Table 8). To prove this, compare
the matrix of Table 8 to the modular CLIPS design found in handout number five.

An interesting side-benefit to this is that, for the modular approach, one can assess, using the
matrix of Table 8, the amount of coupling and cohesion that exists for each module. Every
module should be strongly cohesive (i.e., the module is completely defined without any
extraneous data or operations) and very loosely coupled (i.e., each module should have few, if
any, dependencies on other modules) In the case of Table 8 one could make the arguement,
for example, that the signal and timer modules should be combined to form one module due to
the indications of coupling found in the middle box of Table 8. The loose coupling is evident
by examining areas of the matrix in Table 8 that are not highlighted. The frequency of zeroes
indicates that little or no coupling between modules exists.

6 Handout#8

Rules \ Facts

Table 5:

R1

R4

RS

R10

Rll

R12

R13

R14

FI F2 F3 F4 F5

1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 1 0 0

1 0 1 0 0

1 0 1 0 0

1 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 0 1 0 0

0 0 1 0 1

Connectivity Matrix for the Modular CLIPS

Implementation

FS

0

0

0

0

0

0

1

0

0

0

0

0

0

0

7 Handout #8

Rules \ Facts

Table 6:

R1

R2

R3

F1 F2 F3 F4

1 0 0 0

1 1 1 0

1 0 0 1

1 1 0 1

1 0 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 0 0 0

Connectivity Matrix for Ad-Hoc CLIPS

Implementation

F5 F6 F?

0 0 0

I 0 0

0 0 0

0 0 0

0 I 0

I I 0

1 1 0

I I 0

0 0 1

8 Handout#8

Rules \ Rules

Table 7:

R1

R2

R3

R4

RS

Re

R7

R8

R9

R1 R2 R3 R4 RS R6 R7 P4 R_

1 1 1 1 1 1 1 1 1

1 4 1 2 1 3 3 3 1

1 1 2 2 1 1 1 1 1

1 2 2 3 1 2 2 2 1

1 1 1 1 2 2 2 2 1

1 3 1 2 2 4 4 4 1

1 3 1 2 2 4 4 4 1

1 3 1 2 2 4 4 4 1

1 1 1 1 1 1 1 1 2

Connectivity Mapping between Rules (RF * RFTR) for

the Ad-Hoc CLIPS Implementation

9 Handout #8

Rules \ Rules R1 _R2

R1 1 1

R2 1 2

R3 0 0

!=.4 0 0

RS 1 1

RS 1 1

R7 1 1

Re 0 0

Re 0 0

Table 8:

R10 0 0

Rll 0 0

R12 0 0

R13 1 1

R14 0 0

R3 R4 R5 R6 _ R8 R9 R10R11R12R13R14

1O O 1 1,10 O O 0 0 1j 0"

0 0 1 1 1 0 0 0 0 0 1 0

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

2 2 1 0

2 2 1 0

1 1 3 1
i

0 0 1 1

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

2 2 1 0

1 1 0 0

0 1 1

0 1 1

0 1

0 1

1 1

1 3

0 2

0 2

0 1

1 2

1 2 1

1 2 1

1 1 1 0

1 1 0 0

0 0 0 1

2 2 1 2

2 2 1 1

2 2 1 1

1 1 2 1

1 1 1 2

1 1

1 1

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

Connectivity Mapping between Rules (RF * RFTR) for the Modular

CLIPS Implementation

10 Handout #8

Genemtlng Read/Wrlte Matrices

Additional graph techniques exist for analyzing correctness criteria in a rule-base. One of
these techniques works with matrices generated by examining the read/write relationships
between facts and rules.This particular technique will be explored from the perspective of

teachability (i.e., "can I get there from hem?'). For example, Tables 9 and 10 on pages 15
and 16 show matrices that map rules to facts based on whether the fact appears on the right
or left hand side of the rule for the ad-hoc CUPS implementation. Tables 11 and 12 on pages
17 and 18 show the analagous matrices for the modular CLIPS implementation. Each of
these matrices are built following a similar technique to the other connectivity matrices. A 1 is
placed in each slot where a rule and fact are "connected." Zeroes indicate that there is no
relationship between a given fact and rule.

Once these matrices have been built, two different equations can be used to analyze
"reachabillty" issues within the knowledge base. The first equation below generates a matrix
that matches facts against other facts (see Tables 13 and 19 on pages 19 and 25). The
second equation matches rules against other rules (see Tables 14 and 20 on pages 20 and
26).

• (Rd TR) * (Wr)

• (Wr) * (Rd TR)

where (Rd) is the initial Rule\Fact read matrix and (Rd TR) is the transpose of
that matrix

Identifying Anamolles

Tables 13 and 19 on pages 19 and 25 show the fact to fact conn_ relationships for the
ad-hoc CLIPS and modular CLIPS implementations respectively. What useful information

does this matrix provide? These matrices indicate, for a given order pair of facts (_ and fj),

whether a rule exists that reads _ and writes fj. Following this line of reasoning for the ad-hoc

implementation, some anomalies in the rule-base are apparent. Anamolies, remember, do not
necessarily indicate an error exists, but rather indicate that the possibility for an error exists.
For example, consider the first column of the matrix. This column indicates that one rule
reads fl and writes fl, but no other rules write fl. Is this a problem? Looking at the rule-base

this can be explained. The rule Update_Time (this is the rule that both reads and writes fact
fl) is intended to update the time at the end of each cycle in order to simulate a clock. A

salience value was added to the rule (i.e., this rule will not fire unUI a state is reached where

11 Handout #8

no other rules at a higher salience can fire) to guarantee, among other things, that this rule is
the only rule than can update the time (i.e., fact fl). Therefore, this is not a problem.

Are there any other anamolies? Yes. Look at column three of the matrix in Table 13. The

column contains all zeroes. This indicates that no rules write fact f3 (this is also seen in the

write matrix of Table 10). Yet, Table 9 indicates there are rules that read fact f3. This is

clearly an anomaly. Once again, though, this is not an error. As it turns out, all variations of

fact f3 have been defined within a deffacts structure (see page 1 of Handout #2). A similar

line of reasoning can be used to explain the anomaly that the last column of the matrix (fact f7)

is also all zeroes.

What about the matrix for the modular implementation? Does this provide any useful
information? There are two columns in this matrix that contain all zeroes. The column for fact

f2 can be explained using the line of reasoning from the previous paragraph. A deffact

structure was used to do the write for fact f2. The purpose of the rule that reads f2 (which is

rule R2) is to terminate the rule-base. Therefore, should rule R2 fire, the knowledge base

terminates and no more "writes" are performed. The same arguements follow for fact f6 which
also has all zeroes in its column. One proc--",,_s,then, for demonstrating correctness using
these matrices is to look for anomalies and then provide arguements that these, in fact, are
correct.

Anomalies also exist in the matrices of Tables 14 and 20 on pages 20 and 26. These
matrices show rules that are related because they read and write the same facts. For
example, the rules R4 and R5 are connected because they each read and write the fact f6.

One of the most curious anomalies in the matrix of Table 14 relates directly to the error

discovered in Handout #2. Examine the row and column for rule R3. Rule R3

(DeLOld_Changes) is connected with itself, but is not connected via facts to any other rule.

This indicates two things. First, R3 is a dead-end rule. In other words, rule R3 does not

influence the firing of any other rules. Second, R3 will, in fact, never fire because them are no

other rules that write fact f4. This is also evident in the inital read and write matrices, but is

probably easier to analyze using one matrix than by trying to visually combine the results of
two matrices.

Testlng Reachablllty

Nazareth points out that for a connectivity matrix A, the equation An will generate a matrix
showing whether a given rule, for example, can be reached from another rule across n edges
(based on a graph that can be generated based on the connectivity matrix) of a directed
graph. Using the matrices generated so far, the definition would look something like this:

Ai, j := { 1 iff rule i -> ruiej}

12 Handout #8

This equation states that the matrix A will.contain a I whenever the result of firing rule i

influences the firing of rulej to tire. The matrix generated from A2 , then, can be defined as

follows:

Ai,k := {1 iff rule i -> rulej -> rulek}

This definition can be carried forward to show elements of reachability (i.e., can a given rule
be influenced by another rule). In the framework of the matrices worked with in these
examples, this connectivity is done, when working with rules, by facts. In other words, a given
rule "writes" a fact and that influences the firing of other rules that also change facts that
influence other rules and so on. Following Nazareth's approach generates a narrow result
that allows one to focus on specif'¢ roles. For the examples here a more general reachability
result was desired. To achieve this more general result, the following equation was used:

A+A 2+A 3+...+A n

This equation adds all of the A n mabtcas (each value greater than 0 was converted to one
since the concem was to show whether or not a rule was reachable from another rule not

necessarily how many edges in a graph were required to achieve that reachability). Tables 15
through 18 on pages 21 through 24 show the results of applying this equation to the ad-hoc
CLIPS implementation. Tables 15, 16 and 17 show successive implementations while Table

19 shows the cumulative results of applying this equation to A 9. Tables 21 through 24 on

pages 26 and 30 show the results as applied to the modular CUPS implementation. Tables

21,22, and 23 show successive approximations while Table 24 shows the result up to A5.

The examples stopped at A 5 because the matrices generated following that up to A 14 were all

identical to A 5.

The primary result from applying this approach is that the anomalies mentioned earlier
become more pronounced.These results become more pronounced because as the equation
is carded out more slots become filled with one's until at some point the matrices begin to
repeat. For the example, the row for R3 never changes because as was already discovered

this rule has essentially no bearing on the rest of the rule-base. The anomaly associated with

rule R 1 also is still apparent because its column remained the same throughout.

The results of this equation when applied to the modular approach also provide interesting
results. These results can be summarized by recognizing that there are fewer anomalies to
consider for the modular case than for the ad-hoc case. This certainly supports the notion that
designing modular knowledge bases results in easier analysis. While it is a positive thing that
techniques such as these find anomalies, is it not better to design a system so that anomalies
are avoided? Designing a system in this matter reduces the analysis of these matrices to
confirmation that the system will perform as designed.

13 Handout #8

Landauer presents formulas for building other interesting matrices that can be used to analyze
a rule-base. Nazareth also points to some interesting results that can be obtained by

representing a rule-base as a directed graph and then applying elements of graph theory to do
network flow analysis. These other techniques will not be considered here. However, the

student is encouraged to examine these other techniques because of similar benefits they

provide in analyzing a rule-base.

14 Handout #8

Rules \ Facts

Table9:

R1

R=

R3

R4

RS

RS

R7

P_

R9

F1 F2 F3 F4 F5 F6 F7

1 0 0 0 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 1 0 1 0 0 0

1 0 0 0 0 1 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 0 0 0 0 0 1

Read Matrix for Ad-Hoc CLIPS

Implementation

15 Handout#8

Rules \ Facts

R1

R=

Re

R4

Re

Table 10:

Re

R-/

Re

Re

F1 F2 F3 F4 F5

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 1 0 0 1

0 1 0 0 1

0 0 0 0 0

Write Matrix for Ad-Hoc CLIPS Implementation

F6 F7

0 0

0 0

0 0

1 0

1 0

0 0

0 0

1 0

0 0

16 Handout#8

Rules \ Facts

R1

R2

RS

R4

RS

Re

F_

F_

Table 11:

R9

R10

Rll

R12

R13

R14

F1 F2 F3 F4 FS F6
Jl

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 1 0

0 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 0 0

0 0 1 0 1 0

Read matrix for Modular CLIPS Implementation

17 Handout #8

Rules \ Facts

R1

R2

R3

R4

RS

R6

R7

RS

Table 12:

F1 F2 F3 F4 F5 F6

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

R9 0 0 0 0 1 0

R10 0 0 1 0 0 0

Rll 0 0 1 0 0 0

R12 0 0 1 0 0 0

R13 0 0 0 0 0 0

R14 0 0 1 0 0 0

Write Matrix for Modular CLIPS Implementation

18 Handout #8

Facts\Facts

F1

P2

F3

F4

FS

FS

r-r

Table 13:

F1 F= _ F4 FS FS F7

1 3 0 1 3 3 0

0 3 0 0 3 2 0

0 0 0 0 1 1 0

0 0 0 1 0 0 0

0 3 0 0 2 1 0

0 3 0 0 2 2 0

0 0 0 0 0 0 0

Connectivity Mapping between Facts (RdTR * Wr)
for the Ad-Hoc CLIPS Implementation

19 Handout #8

Rules \ Rules

R1

R=

R3

R4

RS

Table 14:

Re

R'/

Re

R9

R1 R2 R3 R4 R5 R6 R7 R8 1:19

1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1 0

0 1 0 1 0 1 1 1 0

0 1 0 1 0 2 2 2 0

0 1 0 1 1 3 3 3 0

0 0 0 0 0 0 0 0 0

Connectivity Mapping between Rules (Wr * Rd TR) for

the Ad-Hoc CLIPS Implementation

20 Handout #8

Rules \ Rules

R1

R=

RS

R4

RS

Table 15:

Re

Re

R_

R1 !12 R3 R4 i:15 R6 R7 118

1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1

0 0 1 0 0 0 0 0

0 1 0 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 0 1 1 1 1 1

0 0 0 0 0 0 0 0

Reachability Matdx (Rules_:lules) Step 2

(A.A 2)

1

0

0

0

0

0

0

0

0

21 Handout

Rules \ Rules

R1

R2

R3

R4

RS

Table 16:

RS

R7

RS

RS

R1 R2 R3 R4 1=,5 R6 R7 i='8 R9

1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 0

0 0 1 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

Reachability Matrix (Rules\Rules) Step 3

(A+A2+A 3)

22 Handout#8

Rules \ Rules

Table 17:

R1

R2

R3

R4

Re

Re

R7

Re

Re

R_ R2 Re P_ RS Re R7 Re Re

1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 0

0 0 1 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

Reachability Matrix (Rules_Clules) Step 4

(A+A2+A3+A4)

23 Handout#8

Rules \ Rules

Table 18:

_ % m+m4ms ms F_ F_

R1 1 1 1 1 1 1 1 1

R2 0 1 0 1 1 1 1 1

R3 0 0 1 0 0 0 0 0

R4 0 1 0 1 1 1 1 1

R5 0 1 0 1 1 1 1 1

R6 0 1 0 1 1 1 1 1

R7 0 1 0 1 1 1 1 1

1='8 0 1 0 1 1 1 1 1

!=,9 0 0 0 0 0 0 0 0

n9

1

0

0

0

0

0

0

0

0

Reachability Matrix (Rules\Rules) Step 9

(A+A2+ ... +A 9)

24 Handout #8

Facts \ Facts

Table 19:

F1

1=2

i=3

F4

FS

FS

F1 F2 F3 F4 F5 F6

2 0 2 1 1 0

0 0 0 0 0 0

1 0 5 0 1 0

0 0 3 1 0 0

0 0 2 0 1 0

0 0 0 1 0 0

Connectivity Mapping between Facts (RdTR
* Wr) for the Modular CLIPS Implementation

25 Handout #8

Rules \ Rules

R1

R2

R3

R4

RS

R6

R7

R8

Table 20:

R9

R10

Rll.

R12

R13

R14

R1 R2 113 P,4 R5 R6 R7 118 R9 R10R11 R12R13 R14

1 1 0 0 1 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 1 1 1

1 1 1 1 2 2 1 0 0 0 0 1 2 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 1 1 1 1 0 • 0 0 0 1 1 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

Connectivity Mapping between Rules (Wr * RdTR) for the Modular

CLIPS Implementation

26 Handout #8

Rules \ Rules

Table 21:

R1

R1 1

R20

R30

R40

RSl

R60

RT0

RS0

R10 0

Rll 0

R12 0

R13 0

R14 0

R2 RS

1 0 0

0 0 0

0 0 0

0 1 1

1 1 1

0 1 1

0 0 0

0 0 0

0 0 0

0 1 1

0 1 1

0 1 1

0 0 0

0 1 1

RS

1

0

0

1

2

1

0

0

0

1

1

1

0

1

P.6 R7 R8 P'9 R10R11 R12R13 R14

1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1

2 1 0 0 0 0 1 2 1

1 0 0 0 0 0 1 1 1

0 0 1 0 1 1 1 0 0

0 0 1 0 1 1 1 0 0

0 0 0 1 1 0 0 0 1

1 0 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 0 0 1 1 0 0 0 1

1 0 0 0 0 0 1 1 1

Reachability Matrix (Rules\Rules) Step 2 (A+A2)

27 Handout #8

Rules \ Rules

Table 22:

R1

Re

Re

R4

Re

Re

R7

Re

Re

R10

Rll

R12

R13

R14

R1 R2 R3 R4 R5 Re R7 Re R9 R10R11 R12R13R14

1 1 1 1 1 1 1 1 1 1 1 1 1 1

o o o o o o o o o o o o o o

o o o o o o o o o o o o o o

0 1 1 1 1 1 1 0 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 0 1 1 0 1 1 1

0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 0 1 1 1 1 0 0 1 1 0 1 1 1

0 1 1 1 1 1 1 0 1 1 0 1 1 1

0 1 1 1 1 1 1 0 1 1 0 1 1 1

0 1 1 1 1 1 1 0 1 1 0 1 1 1

0 0 1 1 1 1 0 0 1 1 0 1 1 1

0 1 1 1 1 1 1 0 1 1 0 1 1 1

Reachability Matrix (Rules\Rules) Step 3 (A+A2+A3)

28 Handout #8

Ru!_a__\ Rules

R1

R2

R3

P,4

RS

R6

Table2'3:

Fie

R10

Rll

R12

R13

R14

R1 R2 R$ P,4 R5 i=,6 R7 P'8 1:19 R10R11 R12R13R14
I

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
m

Reachability Matrix (Rules_Rules) Step 4 (A+A2+A3+A 4)

29 Handout #8

Rules \ Rules

Table 24:

R1

R11

R20

R30

R41

R51

R61

R71

i=,81

R91

R101

Rll 1

R121

R131

R141

R 2 R3 R4 R51='6 R7 R8 R9 R10R11 R12 R13 R14

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Reachability Matrix (Rules\Rules) Step 5 (A+A2+ ... +A5)

30 Handout #8

Launch Seauendna

Purposeand Background

Functions

•r'm rum/ms to I_ _ m:

1. Podmn nmnina] launch _ _ {NLSFs). Each NI.SF has a
axnmmd which wil pedon_ h'w_ and a sot o(cmsm,ints about whon
must be mot before g_e _ can be issued. Sad_ NI.,,oFao has ohw
o:mlrmm m when R _Wsho_d be pedom_ dq_,,_mg on b _ to
o_w NLSF_ Fm_. e_h _.SF m j,dmd to have b_n s,cm_ _,_
on/he _n_ of e0dtcmdRkx_ The NLSF-s are docummtod in Table _.

2. k_citor erroro_n_li_x_ End" omdi_ns am _ _ in U_ _e,/are
monit_ un_r c_lain _mdlt_s. The _ _ and whon _h_
shouk/be _ am _ in Table 2.

3. R_ to enom. An wror (=ndl_n o_um when a d,,ck ('-e., _) _ a
funcSon/aJsto con_ or il l_s been delemlinedb'_d_ can not be
issuedi _ Hght'4_ to achievem_n engineignitionat MET.O.Oseconds.
"the_ enu' recove_ adJons are doctm_ntod inTable 3.

Table 1: Nominal Launch Sequence Functions

I:UNCI_O_ com-r x rs

Tl]is= _ main k,ml ev_ and
mustocc_mMST_.O._m_
aboe_urbetweea2and_
memds,aer_ _
ens_as built _

]dmt ecm'wa_ 2 secmds _

eteedn e,:t0me.

nmeJm_,_.

i ,J, i

lm_d lhlk mature/on
conr=m_

Table 2.: Monitoring Conditions

i i

_c ip_Ki_ Z_m_mdmie_comz ofI00

mizl 4 secot mmmi_ mintnot
m,3p_ 9o

_em:h.1 mc

ii

em:h 3 sec ezzpm_

daecb_ each I zltez

zmmmmml_

Table 3: Error Recovery AcHons

CONDITION I_C'O'v'IIRY ACTION

Itno _ld_ m mmi_ i=m
branch bold.

zfmw_mm_

llnn_ hold.

Ifmmeesmu_
_ntdowa failed eagiDe m_ly if
deing m will m_l maim=in
ovmnem1__

Cowectness Considerations

Hln_

File Marm0_ement Interface

Badqlround/Purpose

TIm_ Js a s/mpIe 51e mamlpmmz sym_ thaz aocepl a commmd in a _ fcm_ and ix_oms _
indicamd _ 1_r mample, llm urn'can t3vpe"CO_Y reel _ wx:opy fie1 _ _0,. The
pmp(_ M_s new prosmm is w lxov_ a nanml langua_ imedaae to the me _ _

¢oaua.dw m _ ._ cr.,,1_ /APIFRND'.

Functions

"thecoamumdsaccep_ by_ t _ s,_m m
COPY file1 _/APPEND/REPLACE/NOPROMPT

(nopma_ optim is trod wi_ the mplacoand mo_ options;the urn- is
rd _ _ s_ a_ady ox_s)

RENAME Be1 ge2 _IOPROMPT
0he _ o_n does notprom_ ._e us_ _ Se2 a_ea_ ex_)

DELETE t_1/NOPROMPT
O_e _ c_:_ionck_ rw_t_ lheus_ ifreeldoes not exist)

USE ale1 tee2 _ IN tikln

(1his_ inlx_ fdes appeadng before _e word IN to the program

UST paUm
('_is coamm_ semchesforruesmatchingthe patmmand liststhem;
O_epattmn allows an asterisk to appwr as a wklcard for one or more
¢hmCm)

The anowednmzal lanlpu_ hnpe_ sbouidindud_ _ use of alxnmave reds such as move, _:¢_., put,
enn._,discasd,ttn'owaway, aecam, iuwdm, _c. "rl_ inpm seuxzmesshould_ _ _ m _ m
any mmxalon_ m:h as "repia_ _e2 with t1_1".

Hints

TJ_ aboutsa_y, xu_sm_s, andhow mu_ _I_sys_n sbouM "gues"aboutwhm _ _ _ _ _.

Tl_k abou_theposn_ m_ _ms _batnnl_ beneed__,r(_dm _ andal_mdv_ _
_nqde_e_ov_q_e._Iso,youcanamme _he_ ofa_ ae_neinmads_ i (md

Car Won't Sla_ Dlaonosis

Functions

Objects

BATrERY
STARTER MOTOR
STARTER SOLENOID
SPARK PLUGS
DISTRIBUTOR
CARBURETOR
GAS TANK
FUEL PUMP

Fmally, ff _ e_gi_ rams over _hms fro"a li_le while (_a ifi_ is l_ flare a _ _ _ _

movi_ _ li_ from _t_ f_ lmmp mo_h_ ca_mnmx m/k v_ tm_iy Wi_ _o _m'_ _ _ _
_ _mSiy squire mt f_m _1_ 1_ fl_ _ f_l lmmp is r_ md _ lily m _ m _ _

a _tm_) mi om'y wi_ _ msi_ is c_kL

Hints

T_7 _ fl_e_ _ in inch a way _ yoo can/de_fify wh_ fl_ _ c_ _oold

Wak_ Call _irm

Purpose and Background

_n_o_

A. Prioritizatioa

wjmp call xeqmm w01be disdxnSes_l treed m the _ of dinezoem. An hilh _ _ (_ _

p_0d_ed _ to wS/ch =ns _m _ _:t ml a:conhS to nmws-.. a _ _ _
/s becom/_ Z_ _ is sire: s/z _ the we/sbt u the ad/oa: o_tbe _msx. Pot _ if
wd_ ca_ A was n_p_ed oae _ur_ wak_ =U B T_ wak_ caUB is :mm_ _ _
h_ dme_wakop call B I_s a l_mm pxim/ty (60 io_ A vs. _ for B).

A cdl cambe _es a l_l_pa_0d_ in _m ways.

b=h coadix/om hokl dse= d= call w/_ be _ivm hish_ p=iod_y ov_ an room _

s. E,rSy

Duxi_ dm_ of_ day d_ sm knmm _obe puk loadl calls can be _ m _ _

1. highdus _an be _hd up t_ S m_.tas eady
2. n_ium _,m _m _ _,l_d up t_ lO ntuu ,,ar_
& _w ¢_B =n ba _ up _ _0 n-_numsaar_y
4. i__,,, s;_/a_ p,_n_ _ _ sat _,_n tho _a_ =n bo madoupto _0 minutu _

The= a_ two _d/_0ml cmsk_msmk_¢ The _sz is _b_ a hm csdl alwa_ hns iziod_y _ m _ _
Th_ secoodis she if two :mem cslls ha_ _e sle p_iod_ d_m _ _ = _.

Hints

wooid Ibis hs_oess:ey0u lesl spjpuoach? A= lhem shy cx_/cal sspecls Ibsl deser_ mc_e _ Ibsn

Description of Monkeys and Bananas Problem

Monkeys and Bananas

Characteristics of objects and actions

_]:ast_ fo_.,_

l. It has a locadon.

2. It is loczted on top of something (the fioo: or anmhcr object).

3. It rm,y be ho/ding m_ objzcL

1. _thasa _ztio_

2. It is locami on top oi"_ (the floor c_ moth_ object), of/z is amch_ w the c_ling.

3. It has a w_= (.zher li_ or h=vy).

In add/fion, an object 1z1_t_ following ch,mwtm_._li_/i'it is a _

1. It mmaim mmh_ 0bj_t. 'z

2. [t is_ bymot_ ob_ (ak_y).

The mon]r_ may _ m obj_t und_ t_ _llowing _

L l']m'_ mm:s a Iml to m tiz objm::.

z _ mo_yis __ o_m.

2. _ mm_l_ is _ tl_ mm__x_o_ asfl_ ob_cL

3. The o_ isa_m:hedto themT_ andthemonkeyis on topofthe]adder,_or both_ _
mdtl= o_ m _p of',J_ sm_ _ (_l_r ",_ flooror mod_ obj_z).

The monkey may mow:to a _ un_r _ following mnditio_

1. _ e=ists a lp_al to move to tI_ loczdon.

2. Th_ moakW is on th_ floor.

" Editor's note:. Pmumably this should be "it may comain anottm- object."

!, Editor's note: and the ladder as at the same location.

Th_ _ m,_/ctimb omo an objectunder_hefonowins_

1. Th_ ,u_.stsa i_l to ctimb onto the o_

T'_ _ is hokl_ _,hinS. _

3.T_ monkw ism thesame _ astheobjecL

4. Both_e mankey md theobjectareon _ of_ sameplace.

Initial Conditions

T_ _ is to _t _ bananas._"

The i_ial _ az_

Table 1. _

couch

red couch t2-2

md cb_ t2-2

'ue cou t8-8

bl_ ch_ t?-7

8n=::chest t8-8

_d key ti-3

_y _ iadJcme that the aem'b_ dora not a;qzly to the ob_m.

floor

floor

micm_

_pmow

floor

floor

.oe_

mmmim

ladder

tmmm t_k_

key m

Actions
t

•r'be _m,w jump omo -,.be]b:_. mxlm"_ _ copa;__

1. Tbm e:d_ - p,J _ j_ omo _ _cxr.

2. Tb= _ is _ _m the floor (we _.p --a down).

The monkey mw drop m object ruder tb= fol]ow_ comiidom:

1. Tbm= ezim a lmalto drop tt.= obje_

_. The _. bok_ me ob_

s. Editor's notz: The $oal is for the moak_ to eat the banams-

u The original descripsioamissedout the following:

• The redkey is on topof the floor.

Note: the obje_ may be _ either oma the _n" or',he place _J_e_ is on.

The mankey may "az_x:ka dzest under the foIlawin8 maditians:

1. Th_ exists a lSud to mk_ _be chest.

_. The _=st mn bemlod_ by motJ= object (thekey).

3. The=eel. h hoid_ thetey.

4. The =onk_ is a_the samekxati_as the (:b_

5. lknh the monkey md the ches_ aze _ u_ af_ same pla_

Note: when a d:test is m_,ed, the obje_ it _ is _ ¢mtop ¢_"the d_'t.

Commentary

T_ word "_" is m_d _ou_0c_n this probl_ _ _ _h_ this probl_n shm_Idbe solved
u._g _ls. Aw/8gmqw/ate medmdok_im may be mai to mh_ _e __

The problem, _, should be soh_ in a way ¢h_ a kno_ us_ m/_t b_ _ to so/re _
p_bl¢_ Enowi_l_ _:_mmm_m should not b¢ _ for sprat whm solvi_ ¢h¢ problem.

The _ shau_ be able to mn under two mades. Oae mode shaukl run the _ tninfing _
the _ mdmxkm by_ _, _ th¢othermode_ mUy_ a _ _ _ _
has ¢aum the bmmxm. Two s_:m-_e vmmcms of _h¢ bcnchmm_ c_ a w_ miu:h in a s_l_ vm/on of the
bmchu_ mz m/ruble m pn:n_ th/s _.

_. Editor's emphasis.

_1: A Solution
For The Traffic Controller

Problem Using Terms,
Operators and Productions

Introduction

Case Study number one will provide a detailed example of designing an Expert
System solution to the Traffic Ught Controller problem. The example is founded
on work done by IBM's Houston Scientific Center• This effort (with assistance

from Texas A&M University) combined the strengths of Production systems,
Term Subsumption Languages and Object-Oriented programming to define a
design language, called TOP (Terms, Operators and Productions), suitable for
building verifiable Expert Systems. For a more thorough discussion of these
different paradigms please refer to the References section of your class
notebook. A complete design for the Traffic Light Problem written using the TOP
design language is provided at the end of this study.

The design approach detailed in this case study represents an approach that
focuses on continually refining the problem definition as understanding of the
problem expands. Fortunately, as in conventional software design, this
approach can be neatly broken into steps. Verification and Validation
techniques, as appropriate, should be applied at each step. This discussion will
address appropriate Verification and Validation approaches at each step of the
development process.

Step 1: Knowledge-Base Architecture

To ease the verification effort, knowledge should be broken up into different

parts (i.e,, modules). This analysis should focus on identifying the primary ideas
that describe the domain for a given system. In the case of the Traffic Light

problem, this can be done very easily. Be aware that the results of this step are
rarely final. As the problem becomes more cleady understood additional
changes to the architecture of the design will probably be needed.

TOP supports partitioning a knowledge base by allowing the designer to build
Ada-style packages. Each package defines the key ideas associated with a
given unit of knowledge. For example, from the Traffic Light problem, one could
easily identify several different units based on the key objects in the problem
description. These would be sensor, traffic_light and signal. Shown below is the
initial unit definition, using TOP syntax, for the sensor knowledge unit.

package SENSORS is

end SENSORS:

package body SENSORS is

end SENSORS:

Each unit will have a specification and a body. The specification will define the
interface to other units in the design. Each unit of knowledge should be loosley
coupled (i.e., it has few, if any, dependencies on other units) and strongly
cohesive (i.e., a given specificiation fully implements the knowledge).

Knowledge in one unit may be required to define another knowledge unit. For
example, the definition of the signal unit depends on the defintion of the sensor
unit. This is true because the indicators that define a signal are received from an

open sensor. To show these relationships in a TOP design, use the WITH (this
syntax is also derived from Ada) clause. For example, the signal unit
specification would appear as follows:

with SENSORS;

package body SIGNALS is

end SIGNALS;

Verification/Validation Approaches:

Verification approaches at this level are very dependant on how well the problem

is understood. This understanding must come from the expert in the field along
with a detailed requirements document that specifies the required behavior of
the expert system. Analysis using these two sources should focus on showing
that the units defined cover the problem space (i.e., nothing was left out) and
that the partitioning of the problem into units is consistent and maintainable.
Visualization techniques such as structure charts, semantic nets, etc. can be
helpful in analysis of the architecture.

Step 2: Define the Knowledge Terms

The next step in developing an Expert system using TOP would be to completely
define each of the knowledge units. As mentioned, each knowledge unit in the
design captures a unique part of the overall knowledge. In TOP, these unique
parts are described using Terms. The technique for identifying these terms is
called conceptualization of the domain.

What are Terms? Terms capture declarative domain knowledge. In other
words, terms are the words used to describe things in the problem domain.
Terms can be either concepts (an idea) or relations (something that relates
concepts). A simple method of identifying the highest levels of these terms is to
look for nouns (i.e., concepts) and adjectives (i.e., relations). For example, from
the Traffic Light Problem, one could define a concept for each of the units
described previously such as signal, sensor, etc.. These particular concepts
represent the highest level idea to be captured by their respective knowledge

units. These are the easiest concepts to identify. Further understanding of the
problem reveals refinements to these high level concepts, such as
Open_Sensor, Received_Signal, etc.. Each of these refinements serve to clarify
the primary idea captured by the knowledge unit and therefore belong in the
same knowledge unit as the highest level concept. Relations are also identified
based on an understanding of the problem. For example, from the Traffic Light
problem, the relation Has_Approaching would serve to relate the concepts of a
Signal and an Indicator (a special kind of number).

In TOP, refinement of high-level concepts and relations is captured by (1) the
specializes keyword and (2) the ability to specify what makes one term a
specialization of another. For example, the idea of an Received_Signal is the
same as that of a Signal except that the Has_Approaching and Has_Waiting
indicators are associated with a Received_Signal (the reverse is not true). There
may be cases where no definition is possible or desired. These terms are
considered primitive.

Verification/Validation Approach:

Conveniently, concepts and relations can be thought of as sets or classes of
things. The members of these sets are called instances. The definition
associated with a given concept or relation describes when something can be
classified as belonging to that given concept or relation. Clearly, if there are sets
then there are subsets. The specializes keyword serves to identify those terms
that are subsets. For example, instances of the concept Received_Signal are
also instances of Signal, but not necessarily the other way around. Only when
the instances satisfy the Received_Signal definition would they be classified as
both a Signal and a Received_Signal.

The advantage of viewing concepts and relations as sets is that there are lots of
good analysis techniques based on set theory. One simple technique to assist in
analyzing the concepts in a given unit is the Venn Diagram. Each knowledge
unit should capture one major set with all terms defined in that unit being subsets
of that one primary set. For example, from the Traffic Light Problem, all terms in
the unit, Signals, belong to one major set called Signal. If a term in the unit does
not fit quite right into the main set then it should be partitioned into its own
knowledge unit.

S = {Set of all signals}

R---{Set of all received

AO = {Set of all received signals that indicate only appraoching traffic}

WO = {Set of all received signals that indicate only waiting traffic}

WA = (Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signals}

The Venn Diagram should help in defining good concepts and relations and help
in finding those things that do not make good sets, but rather define some global
constraint that the system should operate under. As the Venn Diagram is
defined, there will be some parts of the unit definition that are not conveniently
described as sets. These parts describe more general constraints or conditions

on the knowledge. Typically they involve more than one term. TOP designs
include the definition of Global Constraints for the purpose of capturing these
important parts of the knowledge. These parts are best left out of the Venn

Diagram since they are constraints and not sets. However, the Venn Diagram
can help in analyzing the conditions that define each global constraint. Some

examples of these will be shown later as we expand the scope of the solution to
the Traffic Light Problem.

5

Verifying the terms is the simplestpart of verifying the ES because of their

declarative nature. Just like the first step in this process, showing that the
definitions are correct depends on the requirements and inputs from the expert.
Many of the more difficult aspects of the ES design, such as sequencing, are not
an issue at this early step. However, declarative definitions can become quite
complex (i.e., they involve many conditions). To make theverification process

easier, it is helpful to capture small groupings of conditions into a higher level
condition (i.e., stepwise refinement/abstraction).

For example, from the Traffic Light Problem, an Approaching_Only_Signal is a
Received_But_Not_Processed_Signalthat indicates that a given signal indicates
that approaching traffic was detected while no traffic was waiting. By capturing
this detailed set of conditions as a concept, a name (or abstraction) can be
associated with those conditions. This means that other portions of the design
can check an instance's membership in the set Approaching_Only_Signal, rather

the specific conditions.

Step 3. Defining Tasks for Knowledge Units

After steps one and two the declarative pert of the domain knowledge is
complete. Each knowledge unit captures a collection of terms that define a
piece of domain knowledge. However, nothing has been defined to transition
instances of a given term (or set) to instances of another set. Therefore, the
next simplest step in our design process will be to identify tasks (e.g. object-

oriented programming refers to these as operators) that perform these
transitions. These tasks relate very nicely to the verbs in the problem
description. For example, the unit, Traffic_Light, contains a task (or operator)
called Switch that changes the light.

TOP uses the Method construct to allow designers to define the different tasks in
a given knowledge unit. TOP does not declare a task (or operator) explicitly, but
rather defines it as a collection of its methods. A given task may have many
different methods based on different situations under which they might be used.
For example, the method, Switch, from the Traffic_Light knowledge unit
performs a different function based on whether the light is currently red or the
light is currently green. These differing situations are specifiei:l using the Used
When clause of the Method.

Methods also contain pre and post conditions. Pre-conditions are specified
using the Requires clause and the post-conditions are specified using the To
Produce clause. For example, the method Open from the unit, Sensors,

requires that a given sensor is not already open. A post-condition specifies the
conditions that must be true when the expressions contained in the Involves
portion of the Method have finished execution. For example, when the method
Open finishes execution, the given sensor should be now classified as an
Open_Sensor. In fact, it is very straightforward to show that the post-condition

for this method will always be satisfied, because the method asserts that the
given sensor is now an Open_Sensor.

It is important to recognize the difference between the situation conditions and
the pre-conditons. Pre-conditions express a collection of binding conditions that
must be true for all methods of a given task. Situation conditions, however,

specify a disjoint collection of conditions used to determine which particular
method is selected for execution.

Verification and Validation Approach:

Verification and Validation at this step in the design focuses on showing that the
correct tasks have been identified and that each method of a given task is
correct. Verifying that the correct tasks have been identified is fairly
straightforward. Once again, input from the requirements and an expert are
important is showing the correct tasks have been identified. Another technique
involves using the Venn Diagram approach outlined above. Since all concepts
of the unit are being viewed as sets one can analyze the identifed tasks to see
that these tasks perform all possible transitions (i.e., an instance of one kind of
set can always be transitioned to another kind of set). For example, in the Venn
Diagram that follows, the task Sense is shown to transition any instance of the
set Signal to its subset, Received_Signal. This does give the complete coverage
argument required. How does an instance of Received_Signal become an
instance of Approaching_Only_Signal? This one can be answered directly from
the definition of the concept, Approaching_Only_Signal. How can an instance of
Received_Signal become a Received_But_Not_Processed_Signal?. That

happens as a direct result of the task, Sense. How does an instance of
Received_ Signal become an instance of Received_And- Processed_ Signal?.

Apparently, given the definition of the Signals unit there is nothing defined to
perform that mapping, is this a problem? In some cases this might identify
something that has been left out of the design. In this case, maybe not. The
intention is to allow what ever unit that is processing the ReceivedSignai to
indicate when it has finished processing that signal (hence the concept,
Received_And_Processed_Signal is primitive). Therefore, no problem exists.

The diagram shown does not indicate how the opposite transitions can be made
(e.g., how does an instance of Received_Signal become an instance of just
Signal?.). Take a few moments and figure out how to modify the diagram, based
on the TOP design, to reflect the missing parts.

Having shown that the correct tasks were identified, each task must be shown to
be correct. This is a three part process: verifying the situations, verifying the
pre-conditions and verifying the post-conditions. Verifying the situation
expression involves showing that the combination of all situation expressions
(i.e., each situation for each particular method of a task) covers all possible
conditions under which the task operates. For example, coverage exists for the
Switch task in the Traffic_Light unit, because a method is defined for each

possible state of the light (i.e., red or green). The arguement is easily shown to
be true because an instance of a light can only be a red-fight or a green-light.

Verification of pre-conditions involves showing that the Requires condition is a

necessary condition for all methods of a task. Verifying the post-condition
involves showing that the result of executing the Involves portion of the method

will produce the expected results. Showing that both the pre and post conditions
are correct depends a lot on input from the requirements and experts.

S

 nSC

S = {Set of all signals}

R={Set of all received signals}

AO = {Set of all received signals that indicate only appraoching traffic}

WO = {Set of all received signals that indicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signals}

ii ,= ,,- i i|

Step 4. Specifying Problem Solving Behavior/Tasks

Now that steps one through three have been completed, the basic building
blocks exist for defining the problem solving behavior of the Expert System. To
define this behavior it is beneficial to try and identify the problem solving

8

behavior by abstracting the specifics of what the system does to a general
approach. For example, using the Traffic Light Problem definition, an abstracted
problem solving approach might be as follows.

A goal exists that some activity should be performed (in this case, the light
should change). In order for this activity to be performed, however, a specific
event must take place (in this case, a period of time must expire). A subgoai,
then, is to watch for this specific event to take place. This subgoal depends on
-other events (in thiscase, defining the desired interval of time to wait). Another

subgoal, then, is to watch for completion of these events.

Let's refine this description to be more specific for the Traffic Light Problem. The
desire is for the traffic light to change. What is required for this to happen? A
period of time must expire in order for the light to change. How does a period of
time expire? Clearly a period of timer expires when that exact number of time
units has passed. But, what period of time should expire? There are many
different circumstances under which a period of time is selected for expiration.
These different circumstances map directly to the specific scenarios (i.e.,
stimulus histories) discussed at the black-box view of the problem.

At this point, something interesting happens that was alluded to in step one. At
this point the Traffic Light Problem design has focused on three main units:
Sensors, Signa/s and Traf#c_Light. However, refinement of the problem has
introduced a new unit that was not so apparent when the architecture was
initially defined. This unit, Timer_Unit, focuses on defining the measurement of
time periods to support the goal of periodicaJly changing the traffic light. Should
this happen during design (and it usually will), the appropriate step is to re-work
steps one through three by adding in the new design unit. Venn Diagrams
describing Timer_Unit are shown next.

"Rmerl, lnit Term Analysis-

T

T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}

M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}

ii

lO

Timer UnitTask Analysis

R

T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}

M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}

Having modified the design to accomodate the Timer_.Unit, the domain
knowledge is complete and sufficient for capturing the problem solving behavior.
TOPcaptures each part of the problem solving behavior as a Production. Each

production has a name that describes the intended action this production will
perform, a condition that must be satisfied in order for the desired action to be

taken, a body that performs the action by invoking tasks and a post-condition
that describes the expected result of performing the actions in the production
body. Given this description let's examine who our description of the problem
solving behavior for the Traffic Light Problem maps to the solution shown at the

back of this study. The unit, Traffic_System, contains the highest level
productions that exhibit the problem solving behavior described.

t!

At the highest level of the behavior description is the goal to change the light.
The production, Change_The_Light, performs this action. As specified in the/f
condition of the production, achieving this goal depends on the required period
of time expiring; which, of course, matches the problem solving behavior defined
above. Next, let's exarhrnelh_ subgoal of causing a period of time to expire.
Well, the declarative knowledge explicitly states what causes a period of time to

expire, but how is that state achieved? Clearly, this state is achieved by
reducing the number of seconds until expiration to zero. The production,
Tick_ The_Running_Timer, performs this action.

Let's examine our next subgoal and that is selecting a period of time to expire.

The global constraints shown in the unit, Traffic_System, capture the conditions
that guide selection of the appropriate timer based on the requirements (note
that these capture conditions involving more than one term). For example, the

global constraint, Timer_Should_Switch, will flag when a 15 or 60 second
interval should be used instead of the longer 120 second interval. Using these

abstratct conditions, the productions, ReSta__The_Running_Timerand
Switch_Timer perform the action of selecting the required interval of time to

expire.

Now that the problem solving method has been defined, the specific actions

each production will take must be defined. Typically, this will involve a stepwise
refinement activity involving specification of more abstract tasks that invoke less
abstract tasks. For example, the task, Switch_Light in unit Traffic_System
invokes the task Switch from unit Traffic_Light to change the light and the tasks

Start and Stop from the unit Timer_Unit to set a new expiration time for the next

change of the light. The other tasks in Traffic_System also reflect this process of

stepwise refinement.

Verification and Validation

Verifying this final step in the process is the most difficult part of the process.
The first step is to show that all necessary productions have been defined to
achieve the problem solving behavior. It is also necessary to show that the
sequencing of these activities is correct. The discussion outlined above is an
informal way to describe the problem so that sequencing can be verified.
Another way is to use a state-sequence expression. A state-sequence
expression explicitly dictates the expected order of invoking productions. A
simple expression for the Traffic_System unit might be as follows:

[Tick_The_Running_Timer I
ReStart_The_Running_Timer I
Switch_Timer] -> Tick_The_Running_'13mer -> Change_The_Light}

This expression simply states that Tick_The_Running_Timer,
ReStart_The_Running_Timer and Switch_Timer can be fired in a non-

12

deterministic fashion, but Tick_The_Running_Timer must always precede firing
the Change_The_Light production.

Next, all pre and post conditions must be verified as correct. This is a very
detailed process of mapping conditions in the productions to the composition of
conditions from the invoked tasks. For example, the If condition of the
production, Change_The_Light, must match the Requires condition for the

Switch_Light task. In addition, the result of executing Switch_Light must
produce a result that is compatible with the post-condition, if any, of
Change_The_Light. Fortunately, this is easy when post-conditions have been
specified. For this case, simply match the To Produce clause of the

Switch_Lighttask and the To Produce clause of the Change_The_Light
production.

Next, any tasks invoked by higher level tasks need to have their pre and post

conditions matched against the conditions in the invoking task. For example, in
the task, Switch_Light, it follows that the task Stop can be invoked for the timer

that just expired because an Expired_Timer is considered a Running_ Timer and
the passed timer must be a Running_Timerfor Stop to be used. This process is
repeated until all tasks are shown to produce the correct results with respect to
the productions that invoked them.

13

Specifications

Package Sensors Is

.,._t

- State Data
N

u

N

Model

A sensor is an item that contains (or sends) signals. Other
objects "read" the sensor to access new signals. A sensor
can be "mad" only after it has been "opened."

Concept Sensor Is Primitive;
Concept Open_Sensor Specializes Sensor And Is Primitive;

- Constraints
- N/A

- Initialization
Traft"¢_Sensor is_A Sensor;

- End State Data

..<*

- Transitions

Problem Solving Method
- Whenever a signal has not been received and sensor, is
-- "open" then the sensor should be "read" for new signal
- values
N

Production Open_Sensors Is
If

S Is_A Sensor And
NOT S Is..A Open_Sensor

Then
Perform Open(S)

End Production;

--<*

-- Method Open(S: In Out Sensor)
-- will open a sensor for processing
-- End Open;

Method Open(Sn: Sensor);

14

- End Transitions

End Sensors;

With Sensors;

Package Signals Is

- State Data

N

u

Model

The signals package captures the notion of a signal. A
signal (represented by a 0 or 1) is used to notify the
traffic controller th=,tsome external event has happened.
A signal is considered to be "receivecr'when a new indicator
is received from the sensor. A signal is considered to
be "triggered" when the sensed value is a I from a "received"
signal.

Concept Signal Is Primitive;
Concept Indicator Specializes Number And Is Primitive;

Concept On_Indicator Specializes Indicator And Is Defined By
{

An indicator is ON when its value is 1

}
i Such That i Is_A Indicator And i = I

End Concept;

Concept off_Indicator specializes Indicator And Is Defined By
{

An indicator is OFF when its value is 0
}
i Such That i Is A Indicator And i = 0

End Concept;

Relation Has_Approaching(S: Signal; h Indicator) Is Primitive;
Relation Has_Waiting(S: Signal; I: Indicator) Is Primitive;

ConceptRece_ed_Sign_SpedalizesSign_AndISDennedBy
;

AReceived_But_Not_Processed_SignalisaSignal
that Has_lndicalor I that has just been received from a
sensor.

}
r Such That r Is_A Signal And

r Has_Approaching il And
r Has_Waiting i2

End Concept;

Concept Received_And_Processed_Signal Specializes
Received_Signal And Is Primitive;

15

Concept Received_But_Not_Processed_S nalSpeci .es
Received_Signal And Is Defined By
{

If a received signal has not been processed then it is
a "received_but_not_processed" signal

}
t Such That t Is_A Received_Signal And

NOT t Is..A Received_And_Pmcessed_Signa/
End Concept;

Concept Waiting_Only_Signal Specializes
Received But Not_Processed_Signal And Is Defined By
{

S Is A Waiting_Only_Signal when only the
Waiting_Signal is triggered

}
s Such That

s Is_A Received But Not_Processed_Signal
s Has_Approaching il And
il Is_A Off_Indicator And
s Has_Waiting i2 And
i2 Is_A On_Indicator

End Concept;

Concept WaitingAndApproachingSignal Specializes
Received But Not_Processed_Signal And Is Defined By
{

S Is_A Waiting_And_Approaching_Signal when
both the Wa_ng_Signai and

Approaching_Signal is triggered
}
s Such That

s Is_A Received_But_Not_Processed_Signal
And

s HasApproaching il And
il Is_A On_Indicator And
s Has_Waiting i2 And
i2 Is_A On_lndmator

End Concept;

Concept Approaching_Only_Signa! Specializes
Received_But_Not_Processed_Signal And Is Defined By
{

S ls_A Approaching_Only_Signal when only the
Approa.ching_Signai is triggered

}
s Such That

s Is_A Received But Not_Processed_Signal
And

s Has_Approaching il And
il Is_A On_Indicator And

s Has_Waiting i2 And
i2 Is_A Off_Indicator

End Concept;

16

Concept No_Waiting_Or_Approaching_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By
{

S Is_A Approaching_Only_Signal when only the
Approaching_Signal is triggered

}
s Such That

s Is_A Received_But_Not_Processed_Signal
And

s Has_Approaching il And
il Is_A Off_Indicator And

s Has_Waiting i2 And
i2 Is_A Off_Indicator

End Concept;

- Constraints
- N/A

- Initialization
Traffic_Signal" Signal;

- End State Data

--<*

- Tmn_tions

- Whenevera s_r_ hasnotbeenreceivedandsensoris
- "open" then the sensor should be "read" for new signal
- values

Production Get_New_Signals Is
If

Traffic_Sensor: Open_Sensor And
NOT Traffc_Signal: Received_Signal

Then

Pedorm Sense(Traffic_Signal, Traffic_Sensor)
End Production;

...<*

- Method Sense(s: in signal)
- will retrieve a new indicator from the sensor
- End Sense;

Method Sense(s: Signal; sn: Sensor);

- Method Reset(s: in received_signal)
- will indicate that the received_signal, s, has been
-- processed and cannot be processed again until a
- new indicator has been received

17

- End Reset;
N

Method Reset(s: Signal);
_*>

- End Transitions

End Signals;

With Signals;

Package Timer_Unit Is

- State Data

- Model

- A Timer is an item that serves to mark the elapse of a given
- period of time. A Timer is considered to by "set" when a
- given period of time is associated with that timer. A "set"
-- timer is "expired" when that given period of time expires
- (i.e., is0)

Concept Timer Is Primitive;
Concept T'¢k Specializes Number And Is Primitive;
Relation Expires_In(T: Timer; CT: Tick) Is Primitive;
Relation Has_Expiration_Value(T: Timer; CT: T'ck) Is

Primitive;
Relation Has_Secondary(P: T',ner; S: Timer) Is Primitive;

Relation Is_Secondary_To(S: Timer; P: Timer)
Is Defined By
{

P Is._Secondary_To S when S Has_Secondary P

(s, p) Such That p Is_A Timer And s Is_A Timer And
p Has_Secondary s

End Relation;

Relation Switches_To(P: Timer; S: "rimer) Is Primitive;
Concept Running..Tu_er Specializes Timer And Is Primitive;

Concept Long_Timer Specializes Timer And Is Defined By
{
The Long_Timer expires in 120 seconds

}
t Such That t Is_A Timer And

t Has_expiration_value ev And ev = 120
End Concept;

Concept Medium_Timer Specializes Timer And Is Defined By

18

{
The Medium_Timer expires in 60 seconds

t Such That t Is_A Timer And
t Has_Expiration_Value ev And ev = 60

End Concept;

Concept Short...Timer Specializes Timer And Is Defined By
{
The Sho__T_rner expires in 15 seconds

}
t Such That t Is_A Timer And

t Has_Expiration_Value ev And ev = 15
EndConcept;

Concept Expired_Timer Specializes Running_Timer And
Is Defined By
{
Only an "running"timer can expire. Expiration occurs
when the seconds remaining before expiration is 0.

}
t Such That t Is_A Running_Timer And

t Expires_in w And w = 0
End Concept;

Concept UnExpired Short_Running__mer Specializes
Running_Timer And Is Defined By
(

A short timer that is running but has not expired
}
t Such That t Is_A Running.Timer And

t Is_A Short_Timer And
NOT t Is._A Expired_Timer

End Concept;

Concept UnExpired_Long_Running_Timer Specializes
Running_Timer And Is Defined By
{

A long timer that is running but has not expired
}
t Such That t Is_A Running__mer And

t Is_A Long_.Timer And
NOT t Is_A Expired_Timer

End Concept;

Constraints

Global Constndnt
_ mer_To_Use_When_None_Are_Ru nning
Specializes Timer And Is Defined By
{

Use the longtimer when no other timers are running
}
t Such That t Is_A Long_Timer And

NOT t Is_A Running__mer And
(s Is_A Sho__Timer And

19

NOT s ls A Running_Timer) And
(m Is_A Medium_Timer And

NOT m Is_A Running_Timer)
End Global Constraint;

Initialization

M Is_A Timer
That Has_Expimtion._Value 60;

S Is_A Timer
That HasExpiration_Value 15 And

Has_Secondary M;

L Is_A Timer
That Has_Expiration_Value 120 And

Switches_To S;

- End Slate Data
_*>

.,,_llr

- Transitions

- Whenever all timers are not running, start the timer the
- primary timer (in this case, the long timer)
N

Production InitiaL'l'imer_Start Is
If

t: Timer To Use_When_None_Are_Running
Then

Perform Start(t)
End Production;

- Method Stop(t: Timer) Is
- Stop a running timer
- End Stop;

Method Stop(t: Timer);
Nt_

- Method Start(t: Timer) Is
- Start a timer that is not running
- End Start;

Method Start(t: Timer);
-%

N

- End Transitions
-%

20

End TimerUnit;

With Timer_Unit;

Package Traffic_Light Is

--<*

- State Data
R

- Model
u

A "light" is an item that controls the flow of traffic in
a given direction. The control of trafficflow is achieved
through the use of colors (red and green).

Concept Light Is Primitive;
Concept Red_Light Specializes Light And Is Primitive;
Concept Green_Light Specializes Light And Is Primitive;

Constraints
- N/A

- Initialization
NS_L_ht•Red_L_;

- End State Data

- TranMtio .ns

- Method Switch(l: light)
-- will switch the color of the light in a given direction
- End Switch;
N

Method Switch(l: Light);

- End Transitions

End Traffic_Light;

With Traffic_Light;

With TimerUnit;

Package Traffic_System Is

- State Data

21

m

u

N

H

N

Model

Timers fall into certain "categories" based on the traffic
conditions. Timer_Should_Tck, Timer_Should_Switch and
Timer_Should Be ReStarted define the possble categories
for a timer based on traffic conditions.

Constraints

Global Constraint Timer._Should T'¢k(t: Timer; s: Signal)
Is Defined By
{
A Timer_Should_T'ck when the no approaching or waiting
traffic is detected

}
t Such That t Is_A Running._Timer And

NOT t Is_A Expired_Timer And
s Is_A No_Waiting_Or_Approaching_Signal

End Global Constraint;

Global Constraint Timer_Should_Switch(t: Timer; s: Signal)
Is Defined By
{
A Timer_Should_Switch when the long timer is running
and a waiting signal is received.

}
t Such That t Is_.A UnExpired_Long_Running_Timer And

(s Is._A Waiting_Only_Signal Or
s Is_A Waiting_And_Approaching_Signal)

End Global Constraint;

Global Constraint Timer_Should Be Restarted(t: Timer;
s: Signal)

Is Defined By
{
A Timer_Should_Be_ReStarted when the running timer
has not expired and the current signal indicates
approaching traffic. When the running timer is a long timer
a waiting signal willtake precedence over the approaching
signal,
}
t Such That (t Is_A UnExpired_Short_Running..Timer And

(s Is_A Approaching_Only_Signal Or
s Is_.AWaiting_And_Approaching_Signal))

Or
(t Is..A UnExpired_LongRunning_Timer And

s Is_A Approaching_Only_Signal)
End Global Constraint;

Global Constraint Long_Timer_Expired_At(t: Timer; s: Signal)
Is Defined By
{
A Long_Timer_Expired_At when the running timer is

long and it has expired and a new signal has been
received but not processed.

22

}
t Such That t Is_A Long_Timer And

t Is_A Expired_Timer And
s Is_A Received But Not Processed_Signal

End Global Constraint;

Global Constraim Medium_Timer_Expired_At(t: Timer;
s: Signal)

Is DefinedBy
{
A Medium_Timer_Expired_At when the running timer is
medium and it has expired and a new signal has been
received but not processed.

}
t Such That t Is A Medium_Timer And

t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal

End Global Constraint;

Global Constraint Short_'13mer_Expired_At(t: "13mer;s: Signal)
m Defined my
{
A Short_Timer Expired_At when the running timer is
short and it has expired and a new signal has been
recswedbutnotprocessed.
}
t Such That t Is_A Short_'13merAnd

t Is_A Expired_T'.'ner And
s Is._A Received But Not Processed_Signal

End Global Constraint;

- Initialization
NS_Ligm "Red_Light;

- End State Data

.-<*

- Transitions

- Whenever the long timer is running and waiting traffic is
- detected then switch to running the short and medium
- timers

Production Swit__Trner Is
If

Timer t Should_Switch Because of s And
s Is_A Received But Not_Processed_Signal

Then
Perform Switch_Timer(t)
Perform Reset(s)

End Production;

23

- Whenever no approaching or waiting traffic is detected
- the currently running timer should be pulsed
N

Production Tck_The_Running._Timer Is
If

Timer t Should_Tick Because of s And
s Is_A Received_But_Not_Processed_Signal

Then
Perform Do_Tick(t)
Perform Reset(s)

End Production;
_*>

- Whenever the long timer is running and approaching
- traffic (only) is detected or the short/medium timers are
- running and approaching traffic is detected (irregardless
- of waiting traffic) the running timer should be restarted

Production ReStart_The_Running_T'ener Is
If

Timer t Should_BeRestarted Because of s And
s Is_.A Received But Not Processed_Signal

Then
Perform Re_Start(t)
Perform Reset(s)

End Production;
-%

...<*

- Whenever a running timer expires, the light should change
- and all timers are stopped

Production Change_The_Light Is
If

t ls_A Expired__mer
Then

Perform Switch Light(NS_Light)
End Production;

.._<t

- Method Do_Tick(t: Tinier) Is
- Decrements the number of seconds until a timer

- expires. In the case where a timer has a secondary
- timer (i.e., one that runs at the same time), both timers
- are decremented.

-- End Do_Tw,k;

Method Do_Tick(t: Timer);

- Method Re_Start(t: Timer) Is
- Stops and Starts the timer at its maximum expiration

24

- time.
- End Re_Start;
N

Method Re_Start(t: Timer);

_.<*

- Method Switch_Timer(t: Timer) Is
- Stops the currently running timer and turns on the
- short/medium timers to measure when light should

- change
- End Swich__mer;
o.

Method Switch__Timer(t:Timer);

...<*

- Method Switch_Light(t: Timer) Is
- Changes the color of the light and stops running timer(s).
- End Switch_Light;

Method Switch_Light(l: Light);
wt>

- End Transitions

End Traffic_System;

25

Bodies

Package Body Sensors Is

__<_t

- Transitions

°.<_t

- Method Open(S: In Out Sensor)
- will open a sensor for processing
- End Open;

Method Open(Sn: Sensor) is
Requires Sn Is_A Sensor And

NOT Sn Is_A Open_Sensor
Involves Open physical file

Assert Sn Is_A Open_Sensor
To Produce Sn Is_A Open_Sensor

End Method;

-- End Transitions

End Sensors;

Package Body Signals Is

_<*

- Transitions

- Method Sense(s: in signal)
- will retrieve a new indicator from the sensor
- End Sense;

Method Sense(s: Signal; sn: Sensor) is
Requires s is_A Signal And

sn Is_A Open_Sensor
NOT s Is_A Received_Signal

Involves i= indicator from Sensor
If sensor finished transmitting Then

halt
End If
Assert i ls_A Indicator
Assert s Has_Approaching i
i = next Indicator from Sensor

If Sensor finished transmitting Then
halt

26

EndIf
Asserti Is_AIndicator
Asserts Has_Waitingi

ToProduces Is_AReceived_SignalAnd
s Is_AReceivedBut Not_ProcessedSignal

EndMethod;

- MethodReset(s:in received_signal)
- willindicatethatthereceived_signal,s, hasbeen
- processedandcannotbeprocessedagainuntila
- newindicatorhasbeenreceived
- EndReset;

MethodReset(s:Signal)Is
Requiress Is_AReceived_SignalAnd

s Is A Received_And_Processed_SignalAnd
(s s_ aching Jl

il Is__AIndicator) And
(s Has_Waiting i2) And

i2: Indicator)
Involves Retract il ls_A Indicator

Retract s Has_Approaching il
Retract i2 Is_A Indicator
Retract s Has_Waiting i2
Retract s Is..A Received_Signal

To Produce s Is_A Signal And
NOT s Is..A Received_Signal

End Method;

- End Tmn_ior_

End Signals;

Package Body Timer_Unit Is

- Transitions

- Method Stop(t: Timer) Is
- Stop a running timer
- End Stop;

Method Stop(t: Timer) Is
Requires t Is_A Running_Timer And

t Expires_In e
Involves Retract t Is_A Running_Timer

Retract t Expires_In e

2"/

ToProducet Is_ATimer
EndMethod;

.-<_*

-- Method Start(t: "rimer) Is
- Start a timer that is not running
-- End Start;
.. *j

Method Start(t: Timer) is
Requires t Is._A Timer And

NOT t Is_A Running_Timer And
t HasExpiration_Value ev

Involves Assert t Is_A Running_Timer
Assert t Expires_in ev

To Produce t Is_A RunningTimer
End Method;

- End Transitions

End Timer_Unit;

Package Body Traffic_Light Is

- Transitions

-.<:*

- Method Switch(l: light)
- will switch the color of the light in a given direction
- (when red switch to green)
- (when green switch to red)
- End Switch;

Method Switch(l: Light) is
Used When I Is.A Green_Light
Requires NOT I Is_A Red_Light
Involves Retract I Is_A Green_Light

Assert lisA Red_Light
To produce I Is_A Red_Light And

NOT I Is_A Green_Light
End Method;

Method Switch(l: Light) is
Used When I Is_A Red_Light
Requires NOT I Is_A Green_Light
Involves Retract I Is_A Red_Light

Assert I Is_A Green_Light
To Produce I Is_A Green_Light And

28

EndMethod;

- EndTransitions

End Traffic_Light;

NOT I Is_A Red_Light

Package Body Traffic_System Is

°,,,<*

- Transitions

..<*

- Method Do_T'ck(t: Timer) Is
- Decrements the number of seconds until a timer expires.
- In the case where a timer has a secondary timer (i.e.,
- one that runs at the same time), both timers are
- decremented.
- End Do_T'ck;
m

Method Do_Tick(t: Timer) Is
Used When t Is_.A Long_Timer Or t Is_A Medium_Timer
Requires Timert Should_Tick Because of sAnd

t Expires_in w And
s Is_A Received_But_Not_Processed_Signal

Involves Retract t Expires_in w
Assert t Expires_In (w-l)
Assert s Is_A Received_And_Processed_Signal

•To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-l)

End Method;

Method Do__ck(t: Timer) Is
Used W11ent Is_A Short_Timer
Requires Timer t Should_Tick Because of s And

t Has_Secondary m And
t Expires_In w And
s Is_A Received_But_Not_Processed_Signal

Involves Retract t Expires_In w
Assert t Expires_In (w-l)
Perform Do_T'ck(m)

To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-l)

m Expires_In 1 fewer seconds
End Method;
Nt_

.,._t

-- Method Re_Start(t: Timer) Is
-- Stops and Starts the timer at its maximum expiration
-- time.

29

- EndRe_Start;

MethodRe_Start(t:Timer)Is
Requires Timer t Should_Be_ReStarted Because of s

And
s Is_A Received_But_Not_Processed_Signal

Involves Perform Stop(?t)
Perform Start(?t)
Assert s Is_A ReceivedAnd_Processed_Signal

To Produce s Is_A Received_And_Processed_Signal
t Has_Expiration_Value wl And
t Expires_in w2 seconds And
wl =w2

End Method;

- Method Switch_Timer(t: Timer) Is
- Stops the currently running timer and starts the
- short/medium timers for measuring light change
- End Switch_Timer;

Method Switch_Timer(t: "13mer)Is
Requires Timer t Should_Switch Because of s And

t Switches_To pri And
pri Has_Secondary sec And
s Is_A Received_But_NotProcessed_Signal

Involves Perform Stop(t)
Perform Start(pal)
Perform Start(sec)
Assert s Is_.A Received_And_Processed_Signal

To Produce NOT t Is_A Running_Timer And
pd Is_A Running_Timer And
sec Is_A Running_Timer And
s Is_A Received_And_Processed_Signal

End Method;

_<t

- Method Switch_Light(t: Timer) Is
- Changes the color of the light and stops running
- timer(s).
- End Switch_Light;

Method Switch_Light(l: Light) Is
Used When Long_Timer t Expired_On s
Requires t Is_A Expired_Timer And

s is_A Received But Not Processed_Signal
Involves Perform Switch(I)

Perform Stop(t)
Assert s Is._A Received_And_Processed_Signal

To Produce
NOT s Is_A Received_And_Processed_Signal

End Method;

3O

MethodSw h_Uoht(l:Light)is
Used When Short_Timer t Expired_On sig

Requires t Has_secondary s And
t Is._A Expired_T'wner And
sig Is_A Received_But_Not_Processed_Signal

Involves Perform Switch(I)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal

To Produce NOT t Is_A Running_Toner And
sig Is_A Received_And_Processed_Signal

End Method;

Method Switch_Ught(l: Light) is
Used When Medium_Timer t Expired_On sig
Requires t Is_Secondary_To s And

t is_A Expired_Timer And
sig Is_A Received_But_Not_Processed_Signal

Involves Perform Switch(I)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal

To Produce NOT t Is__ARunning_Timer And
sig Is_A Received_And_Processed_Signal

End Method;

- End Transitions

End Traffic_System;

31

Cleanroom Approach to the
Traffic C0-nt_r0iie-r-Pr0blem _

Authors:

Fred Highland, Brent Kornman

IBM Corporation
100 Lake Forest Blvd

Gaithersburg, MD

IThe following wrkeup has been edited slightly by Scou French and David Hamilton for inclusion in the
classroom material.

Introduction

Technologies such as Oemmom Software Engineering (Mills, et. al, 1987) promise to

dramatically improve the quality of software products by allOwing their correctness to be

formally verified. In order to use these technologies, the design must be specified in a

design l_sn._e and verification techniques must be used to prove the design is correct.

Numerous languages and techniques have been developed to specify and vex_'y the

designs for procedur_ software. However, very little has been done for Knowledge

Based Systems (KBS). The methodologies for designing KBS are poorly understood and
verification and test even less understood.

The purpose of this case study is to discuss a language for the design and veri_cafion of

KBS application software. The basic intuitions and requirements for the design language

are discussed first _llowed by an outline of the design language syntax and semantics.

Next, the characteristics of the language are applied to defined a solution for the traffic

controller problem.

Basic Concepts

The design language presented here is based on two important intuitions about KBS:

• they are a mixture of procedural and non-procedural programming techniques

• they are not just unorganized collections of rules and fi-ames but are intended tO

opmme in a specific manner by the developer

The idea that KBS are built fixnn a mixture of procedural and non-procedu_

programming techniques derives from the fact that many solutions are not sui_y

procedural or non-procedural in nature. Rather, solution approaches are composed of a

number of different subprocesses with different interactions. Some are dependent on the

results of other _ and must be organized procedurally. Others may be performed

independently or in parallel once the proper context is established. It is this laver type

that KBS technologies, with their implicit control mechanisms, are best suited for. But it

requires a mixture of the two forms to produce a complete solution.

The idea that KBS are not unorganized collections of rules and flames is more subtle.

While some useful systems have been built this way, most applications are of such a

complexity that some organization or process must be used to decompose the problem.

This typically takes the form of a set of steps that must be performed or sequences of

events that must occur in order to solve the problem. This may be represented with state

or control variables which determine which rules are applicable at any point in time or it

may be implicit in the changes and availability of the objects referenced by the rules. In

the latter case, control is provided more by the inference engine than by the user. But

often the implicit control is not exactly what is desired and meta-level controls or

2

changes to the rules must be used to produce the desired result. In either case, there is

implicit meta lmowledge in the problem solving process which is usually present in the

mind of the application builder but often hidden in the implementation.

These two intuitions suggest that KBS application design could be captured in a language

the.is based, in pan, on existing procedural software design languages but with

extensions that exploit the characteristics of KBS programming.

Forpracticzl reasons, the design language must also meet the following requirements:

• the design should be verifiable with a reasonable amount of effort and without a

deep understanding oft.he underlying KBS tool

* the design should be easily translatable into the underlying KBS tool's knowledge

representation language

These two teq_ements are conflicting, in that the language, to be easily verif_le,

should be as procedural as possible since techniques for verifying procedural designs are

understood. However, for the language to be translatable to a KBS tool's zepresentadon

language, it must exhibit a non-procedural, declarative style, which is inherently difficult

to verify.

Design Language Specification

The KBS Design Language (KDL) implements the requirements defined above for a

design language. The following sections summarize KDL's definition in terms of syntax,

semantics and correctness conditions.

Syntax

The syntax of the unique components of the KDL is summarized in figure. This design

language is not meant to zeplace existing procedural design languages but rather to

augment .them to deal with. the concepts embodied in KBS programming. The definitions

of global_data_de'finitions,local...data_de'finitions,and actionsinWHEN and

WttENEVER statements are left unspecified in this definition so that structures from

other design or implementation languages may be used to specify details. This allows the

use of procedural control structures in the actions of WHEN and _VER

statements in order to express functions that may be better expressed using procedural

means (e.g. WHILE loops, IF statements, etc.).

°

KB SEGMENT/__segmo__name (arguments)

[segment_intendcd_f_ction]

GLOBAL DATA

•.global_data_definitions

LOCAL DATA

-loCal...data_defmin'ons

[when_intended_function]

when nwne'WHEN
m

[condition_expression]

DO INTERRUPTmLE

[whe n_ acti on_ intended_ function]

actions

END

[whenever_intended_function]

whenever name WHENEVER

[condition._expression]

DO

[whenever_action_int ended function]

act/ons

END

END KB SEGMENT kb_segnumf_name

Figure 1: KB Design Language Syntax

Semantics

The semantics of the design language are defined to accomplish the following goals:

• define the legal operation of the consm_cts

• restrict usage of the constructs to allow verification

• maximize the KBS tool independence of the language

4

°-

_he sem_t:iCS of e_h of the basic components of the language, KB SEGMENT,

WHEN statements, and WHENEVER statements, are discussed below.

KB S effments: The KB SEGMENT provides the highest level of modularization and

scoping for a knowledge base. It defines a logical unit of work that performs a single

[segment.intendS_function]. KBS applications may be composed of one or more KB

SEGMENTs that may interact with other KB SEGMENTs or procedural functions.

:p.

A KB SEGMENT is composed of definitions for global and local data, one or more

WHEN statements and zero or more WHENEVER statements. The WHEN statements

completely implement the :pv.segment_intended_function:epv. of the KB SEGMENT in

a non-deterministic manner. The WHENEVER statements support the WHEN

statements by providing oppommisuc and data driven functions that can be used to
achieve the functions of a WHEN action. WHENEVERs are not active outside of the

context of an active WHEN statement. However, their functionality can be shared by all

WHEN statements.

WHEN Statements: WHEN statements represent a condition under which one or

more actions are to be performed. Their intent is to explicitly represent meta or control

knowledge in the design of the system and the conditions under which that processing is

appropr_e.

The requirement of non-determinism of WHEN statements in accomplishing the

[segment--mtended_ftmction] aUows for the specification of multiple puss_le solution

scenarios while forcing those scenarios to be independent of each other. This specifically

disallows the execution of a sequence of WHEN statements to accomplish the

[segment_intended_function] as such would represent an implicit intent of control which

would be difficult to verify.

The WHEN statement is composed of a [when_'mtended_function], a

[condition_expression], and a WHEN action part. The [when_intended_function]

specifies the abstract condition under which this WHEN statement is appropriate, and the

effect it will have. The [condition_expression] provides a more concrete specification of

the appropriateness conditions. The WHEN action part specifies a sequence of functions

that implement the [when_action_intended_function]. These functions are specified with

procedural specifications that represent the sequence of processing. They may be

implemente¢] using a mixture of procedural design statements and WHENEVER

statements. When WHENEVER statements are used, their intended function is specified
in the WHEN actions so that the WHEN statement can be verified in a self-contained

manner. The .'pv.actions:epv. of a WHEN statement may also specify a CALL KB

SEGMENT action whose intent it is to invoke another KB SEGMENT.

5

Theactions,of aWHEN statementallow two forms of execution to provide for different

implementation approaches. The DO form specifies that all actions within the structure

are executed sequentially without in_n'aption. This is the normal semantic of procedural

0 languages and is appropriate if the implementation is to use either

procedaral pro_ or rule actions without demons.

The DO INTERRUFrIBLE form specifies that WHENEVER statements apply

between each of the actions. This allows WHENEVER statements to be apphed as soon

as the appropriate condition exists. DO INTERRUFrIBLE blocks may contain DO

blocks to specify that certain groups of actions are not intemrptible. WHENEVER

statements apply only between individual .-pv.actions:epv. and DO blocks within a DO

INTERRUFrIBLE block

WHENEVER Statements: WrlENEVER statements opportunisticor
data driven rules or demons that may fire at any time, and as many times as necessary

during the execution of a DO INTERRUPTIBLE block of a WHEN statement. If more

than one WHENEVER is eligible to fire (i.e. its [condition_expression] evaluates to

true) the order of firing of the WHENEVER statements can not produce different

results. As with WHEN statements, such a required ordering ttlxesenm an implicit

control that should be explicitly stated in the design.

The components of a WHENEVER statement are similar to that of a WHEN providing

a whenever_intended_function., a [condition_expression], and a WHEN action. Unlike

the WHEN statement, however, the actions of a WHENEVER statement are performed

sequentially and are not intexmptible by other WHENEVER statements.

Correctness Conditions

A set of correctness conditions or proof rules for verifying that a design is correct have

been defined. These allow verification of the design at various levels of abstraction,

allowing either top-down or bottom-up verification techniques to be used.

Using a top down spproach, the verification stages and associated primitives are as
follows:

KB SEGMENT: [segmentjntended_tion] is implemented

by [when_mtended.funcrionls

WHEN: [whenintendedJunction] is implemented by
WHEN statement

WHEN Action Part: [whenaction_intended_function] is

implemented by WHEN actions

6

-i

WHEN INTERRLrP'I_LE Actions: WHEN actions are implemented by their

refinement and by applicable WHENEVER

statements

WHEN (uninterruptible) Actions: WHEN actions are implemented by their

refinement

WHENEVER [wheneverinte_ed..function] is implemented

by WHENEVER statement

WHENEVER Action Part: [whenever_action_intended_function] is

implemented by WHENEVER actions

Correctnessconditions are defined for each construct or set of constructsat each level of

abswaction as mentioned above. The general approach to the correctness conditions is to

verify thatthe-components of the construct implement the function of the construct and

that the components are well behaved with respect to the restrictions imposed on them by

the semantics of the design language. This involves verifying that improper interactions

do not occur and that the results are deterministic.

The most significant partof the verification processwith thisdesignlanguage is the
verification of the KB SEGMENT. and the WHEN INTERRUPTIBLE actions. The

verification of other parts of the language follows approaches similar to those used with

proceduralprogramming languages.

The KB SEGMENT is correct if:

I For allarguments, does performing all_VHENs accomplish

[segmentintended.funcrion]?

2 Are all [when_intended fanction]s independent of all other

[when_intended_function]s? That is, could the result of one

[when_intended.function] modify data used in another

[when int ended_function p

The fLrSt correctness condition is easily verified by comparison with the

[segment_intended_function] and consideration of the data being processed. Each logical

set of data must meet the condition of and be properly processed by the

[when_intended function]. The second correctness condition verifies that a WHEN

applies only once to a logical set of data. If sequences of WHENs are required to

accomplish the intended function,thenthereisimplicitcontrolthathas not been

specifiedand has been leftforthereviewer to discover.Hence, thisrestrictionnot only

makes verificationeasierbut forcescontroltobe explicit.

A WHEN INTERRUP'rIBLE Action is correct if, for all arguments:

7

°-

1 Does performing the implementation of the WHEN action and applicable

WHENEVERs accomplish the action

2 Does the execution of applicable WHENEVERs terminate?

3 Does the execution of spplicable WHENEVERs produce the same results

regardless of order (i.e. is the result of the execution deterministic)7

These verification rules interact to verify that a set of WHENEVERs accomplish the

intended function of a WHEN action. These rules allow latitude on the pan of the

designer in using WEIENEVERs, but this must be balanced with verifiability. The first

rule requiresthatall_WHENEVERs ina KB SEGMENT be examined to determine if

their applicability is appropriate. The second nile allows multiple WHENEVERs to be

used to accompl/sh a function but requires that their termination must be verifiable. The

third rule requires that the results of execution of multiple WHENEVERs be

deterministic and_that implicit control .sequences are not present. Verification of WHEN

INTERRUPTIBLE acti6ns is potentialIy difficult because of the difficulty in predicting

the sequence of WItENEVER application. However, the su_cture of the design

language encourages isolation of function to small sets of WHENEVERs that are more

easily verified.

Discussion

The KDL provides a structure that distinguishes control and oppornmistic knowledge in

the design of a KBS. The explicit representation of control knowledge is important

because it provides a means to specify the abstract control flow the knowledge base was

designed to use. As knowledge bases are typically data driven, this type of information

is often encoded in rules along with other information using state variables, priorities, or

the cordlict resolution scheme of the underlying system. This makes the control strategies

implicit and difficult to find, _ understanding, debugging, and verification. By

providing a mechanism to represent control, the intentions of the designer are made

explicit and its conecmess can be more easily verified. This does not restrict the

implementation fix_m using traditional tedmiques, such as state variables or priorities, but

specifies the effect that must be acheived for the implementation to be correct.

While the explicit representation of control knowledge is important, the representation of

dam driven and opportunistic knowledge is a key feature of the KBS spproach. This is

also represented in the language in the form of WHENEVER statements. As these are

pattern driven procedural statements, they can be used to represent any processing that

should be performed under a given set of conditions. They can also be used to represent

demons triggered by various actions that occur against data in the KBS making this

representation useful for mixed KBS and Object Oriented paradigms.

The work done on TOP (Terms, Operators, and Productions described in the first

solution to the Traffic Controller problem) embodies many similar concepts to the work

-i

presented here. TOP Operators have similar characteristics to WHEN statements and
TOP Productions have similar characteristics to WHENEVER statements. TOP Terms

provide a much more formal definition of knowledge base objects and their semantics

than is specified in the KDL. In general, the TOP language is a precise KBS

development language that can be used to specify designs and be automatically translated

into a particular KBS tool langauge. The KDL is a much more flexible extension to

existing design languages. Additionally, the verification arguments for TOP have only

been informally defined and the language does not contain the semantic restrictions that

simplify verification. The KDL provides restrictions on the use of language constructs,

-defines of the relatlonshil6 between the constructs, and provides formal con'ectness

conditions to allow verification to occur. However, the similarities of the two efforts

should allow some of the verification characteristics of K.DL to be applied to TOP.

A more general approachto knowledge base verification involving the use of relational

verification techniques has been proposed. However, these techniques are difficult to

use, making them currently impractical for use on real problems. The K.DL attempts to

avoid this problem by separating control and oppommistic knowledge and providing

mechanisms for defining the function of groups of oppommistic rules to limit the need

for relational verification to small, easily managed sets of rules.

The KDL is being used in the development of the Automated Problem Resolution (APR)

prototype. The AIR prototype is an aircraft flight replanning system being developed as

part of a study for future upgrades the the U.S. Federal Aviation Administration's Air

Traffic Control system. The system requires the generation of multiple aircraft

maneuvers in a multiple problem environment and is a non-trivial problem in terms of

representation, problem solving approaches, and performance.

Our experience with the design language to date has been very positive. It provides a

vehicle to represent the designs that we are specifying for the AIR project. It allows us to

specify the types of processing we expected to do in with KBS tools (TIRS in this case)

with a minimnm of restrictions. It also provides a good mechanism to abstract the design

at various levels allowing the use of top-down stepwise refinement techniques. Because

of the issue of verifying the scope of applicability for WHENEVER processing, it

sometimes forces the structuring of the design into multiple KB segments each with their

own control and oppommistic sections. While this suggests the use of sub-KBs or

similar restrictive scoping mechanisms, this is not required by the design as long as the

semantics are the same. Hence, we expect that many of the K.B Segments will be

implemented as guarded sets of rules rather than sub-KBs. The ve#.fication rules for the

design language are usable, allowing verification to occur quickly with minimal

consideration of complex situations. The only problems occur with the use of

WHENEVERs. The language allows WHENEVERs to be used in arbiuafily complex

sequences. While this effectively allows the use of KBS programming techniques, it can

be difficult to verify in complex cases. The need for verification of the design often

encourages simplification of the design in these cases. Most importantly, the use of the

design language allows us to verify the correctness of the designs and utilize Cleanroom

Software Engineering effectively in the development of APR.

9

Summary and Conclusions

A design language for KBS has been described along with a brief description of the

verification approach that is to be used with the language. The language is an extension

of existing procedural design languages with structures for specifying control and

opporlxmistic components of KBS designs. The language supports the development of

KBS software using top down development and Cleanroom Software Engineering
techniques in a practical manner.

The design language is being used in the development of the AIR aircraft flight

replanner prototype. Based on our experience to date, the language seems to provide

sufficient representational power to specify the types of processing expected in a KBS

while providing a practical mechanism for verifying the correctness of those designs.

While the language provides a good starting point for the use of design language and

verification techniques with KBS, there are a number of areas still to be investigated. The

language has only been used on a single project to date. While this project is relatively

large (1500+ rules) and utilizes a number of different problem solving techniques, there

is potential benefit f_om using this language in the development of other projects with

different characteristics. It has also been suggested that this language would be useful for

mixed KBS and object oriented paradigms, but this has not been investigated. Concepts

such as formal descriptions of data and their semantics, such as that provided in TOP, are

not currently part of the language and extension of the language to use data descriptions

should be possible and beneficial. Finally, the use of the language to represent problems

solved using backward chaining reasoning needs to be explored.

•KDL Solution to the Traffic Controller Problem

A simple traffic light controller at a four way intersection has car arrival sensors and

pedestrian crossing buttons. In the absence of car arrival and pedestrian crossing signals,

the traffic light controller switches the direction Of traffic flow every 2 minutes. With a

car or pedesuian signal to change the direction of traffic flow, the reaction depends on
the status of the auto and pedestrian signals in the direction of traffic flow; if auto

pedesuian sensors detect no approaching traffic in the current direction of traffic flow,

the traffic flow will be switched in 15 seconds, ffsuch approaching traffic is detected, the

switch in traffic flow will be delayed 15 seconds with each new detection of continuing
traffic up to a maximum of one minute.

Observations

The problem is inherently a reallime asynchronous processing problem. Such problems

are not easily solved or understood. In that the intent is to provide a simple example, the
problem will be formulated as a synchronous problem.

10

Assumptions

The following as,mmptions represent an inte_on of the requirem_ts in areas that

were potentially ambiguous:

°

.

Traffic flow in the direction of the signal has no impact on the changing of the

si_nai when no traffic is waiting in the opposite direction. The wording of the

requirementsseems to indicate that the 15 second time extension applies only

when traffic is waiting (It is possible to apply this 15 second extension to the 2

•minute default when no traffic is waiting. Some traffic controllers do woric this

way as it minimizes impacts on traffic flow that are not necessary.)

The solution must allow for momentary action pedestrian crossing signals.

While an auto sensor w_l generally be on once an auto is waiting to cross the

signal, pedestrian crossing signals tend to be push-buttons that are only on

momentarily. The solution will assume that once such a button is pushed. The

pedestrian remains in the "waiting to cross" state until the signal changes. If this

assumption were changed to use sample/hold circuitry in the sensors, the use of

the traffic_waiting variable would not be required.

, The pedestrian and auto waiting signals are "ored" together for a given direction

of travel. This simplifies the processing of sensors as ordy one needs to be read
for a direction.

. The delay of traffic flow switch is interpreted to mean that a delay of 15 seconds

from the time of detection is to be applied. Other interpretations, such as adding

an additional 15 seconds to the current delay, are also possible. However, most
traffic controllers seem to work in the manner assumed here.

Solution Approach

The solution utilizes a polling approach that polls the sensors and performs switching on

a I second cycle. (Note that this is a simplification of the more general event driven

approach with asynchronous timers that would probably be used to implement real traffic

lightcontrollers.)

On each cyde, the system wRl increment the internal timers, read the sensors and update

the traffic fight if necessary. This forms the basis for the control logic of the system that

is represented in the WHEN statement.

Two timers are maintained. The "time" timer represents current time and is used in

conjunction with the switch_time variable to determine when it is necessary to switch the

traffic flow. The wait_time represents the number of seconds traffic or pedestrians have

been waiting to pass. Only two timers are needed for this problem because there are only

11

two directions of travel and the uses of the timer are mumaliy exclusive. If the problem

were more complex, e.g. a three way intersection, more timers would be required.

The usage of the timers is as follows:

1. The time is incremented on every cycle of the system.

. The wait_time timer is incremented whenever there is someone or something

waiting.

. Whenever a vehicle or pedestrian is first detected in the stopped direction, the

switch_time is setto rime + 15 seconds.

.

°

Whenever a vehicle or _ is detected in the flowing direction and a

vehicle or pedestri'_ is waiting in the stopped direction the switch_time is (re)set
to time + 15 seconds.

Whenever the time = switch_time, the traffic lights are switched, the

switch_time is set to time + 2 minutes and the wait_tlme set to 0.

° Whenever the wait_time timer reaches 1 minute, the u'attic lights are switched,

the switch_time is set to time + 2 minutes and the wait_time set to 0.

Notational Conventions

. We have adopted the notational convention that ff there is only one When and

the Segment intended function is the same as the When intended function then
the intended function of the When can be omitted.

. We have adopted the notational convention that TRUE -> I (the identity

function in conditionals) is assumed if no alternative is given.

. We have adopted the notational convention that frame instances or classes can

be refened to in the design using their type/class name. This is used in the

Crossing_trattic whenever.

Proof

o When Intended Fgnction implements Segment Intended Function:

Since they are the same, this is obvious.

2. When Statement implements When Intended Function:

12

The When statement condition is always true. The When statement action

consists of inltiAli_g variables to indicate that the light has just switched traffic

flow to initi'al_flow_direction and and changing traffic flow for every second in

time per the When Intended function. Hence, the two are equivalent.

. When St a_tement Inlriali_e implements it's Intended Function:

Using the correctness conditions for KDL, the statement verifies ff its

implementation and all applicable Whenever statements implement the intended

function. In this case, the implementation implements the intended function, and

it can_ seen fzom inspeefiofi that no Whenever's are applicable since they all

utilize a state variable that does not currendy have a value.

. When For Statement implements it's Intended Function:

By the correctness conditions for For statement verification, the statement

verifies if the composition of its body intended function for each iteration

implements the For statement intended function.

While the For appears to be infinite, making verification impossible, it is

actually not. Since wait time is incremented if traffic is waiting, the wait time

condition will eventuafiy be reached. If traffic is not waiting, the third intended

function will do nothing until the switch time is reached (which will eventually

happen since time is incremented by the For loop). It is therefore sufficient to

verify that the composition of the For body for all sequences up until,the

switch/wait time condition is met is correct in order to vemey correctness of the

For.

The verification of the For loop requ/res that the alternatives of the For's

intended function he implemented. These are:

1. If no traffic is waiting to cross, change traffic flow in 120 seconds.

2. If traffic is waiting to cross and there is no traffic in the current direction

of flow, change traffic flow in 15 seconds.

. If traffic is waiting to cross and there is traffic in the current direction of

flow, change traffic flow in 15 seconds, but not more than 60 seconds
total wait.

13

Verification of _gndition 1: If no traffic is waiting to cross, time will be

incremented by the for loop until the switch time is reached. When the switch

time is reached, traffic flow will be switched and the switch time reset. As time

is set to 120 initially and is set to time+ 120 on each switching, traffic will be

switched every 120 seconds if no traffic is waiting.

Verification of Condition 2: If traffic is waiting and no traffic is detected in the

direction of flow, the_hird intended function will set traffic switch time to

time+15 seconds, and indicate that traffic is waiting. The _waiting

indicator will prevent the time from being reset if no other events occur. As time

_s _n_ented on each cycle, traffic will be switched in 15 seconds ff no other

events occur.

Ver_cation of Condition 3: If traffic is already waiting and traffic is detected

in the direction of flow, the second intended function will reset traffic switch

time for time+f5 seconds. If traffic is currently (sensor input) waiting, the

switch time is reset to 15 seconds regardless of whether there is traffic in the

current flow direction or not. In addition, the first intended fimcri_on will

increment wait time whenever traffic is already waiting. The "switch time"
intended f_action wflI switch traffic flow whenever the switch time reaches 0 or

the wait time reaches 60. Therefore, the condition is implemented by the

composition of the intended functions.

° Sens¢r Inpct Intended Function imulementation:

By the correctness conditions for DO INTERRUPTIBLE intended functions,

the function is correct if its immediate actions and applicable whenevers

implement the intended function in a deterministic way.

The immediate actions consist only of read operation which is assumed to be

correct. By inspection it can be seen that no whenevers are applicable as the
value of state is not set.

6. UPDATE WAIT TIME Intended Function imvlementation:

14

Theimmediateactions consist only of an assignment to the state variable. The

only when_er applicable as a result of this state variable assignment is

Update_Wait_Thne whose intended function is identical to the intended function

of the statement here with the addition of the check for wait time update

While _ is a m_'vial example, k indicates the use of state variables to isolate the

function of whenevers and the use of whenevers to implement conditional logic.

. Switch time/Walt time Intended Function:

The immediate action contains only an assignment to the state variable. By

i_spection of the whenevers, it can be seen that only the Switch_traffic and

Crossing_traffic whenevers are applicable. From their intended functions, it can

be seen that they each implement one alternative of the original intended

function. Since they both indicate that traffic flow change is not required as part

of their actions, they will be mutually exclusive.

° Update Wait Time Whenever:.

The condition and action of the whenever match the intended function of the

whenever. By inspection, it can be seen that no other whenevers are effected.

. S.,witch traffic Whenever:.

The condition and action of the whenever match the intended function of the

whenever. By inspection, it can be seen that no other wheneve_ are effected

since they action of this whenever changes the state such that other whenevers

are not applicable.

I0. Crossing u'affic Whenever.

The condition and action of the whenever match the intended function of the

whenever. By inspection, it can be seen that no other whenevers are effected

since the action of this whenever changes the state such that other whenevers are

not applicable.

15

KDL Solution for the Traffic Controller Problem

KB SEGMENT traffic_light_controller (IN: sensor_slzeam, initial_flow_direction)

[Given a traffic light just switched to initial_flow_direction,

For every second in time:

No traffic waiting to cross ->

change traffc flow 120 seconds after last change

/ no traffic in current direction offlow -->

change traffic flow 15 seconds after

detecting traffic waiting to cross

] change trafficflow 15 seconds after

detecting traffic in current direction of flow

but not more than 60 seconds after

detecting traffic waiting to cross]

LOCAL DATA

Parameter Switch_time:

Type: Int,gcx
end

Parameter How_direction:

Type:

(EAgrWEST.NORTHSOUTH)
end

Parameter Wait_time:

Type: Integer
end

Parameter Traffic_waiting:

Type: Boolean
end

Parameter Time:

Type: Integer
end

Parameter State:

Type: (UPDATE_WAIT_TIME,

swrrcH_TRAP'FIC _RYLL)
end

Frame Type Flow_sensor.

Direction: Type:
(EASTWES_,NORTHS oLrrH);

Traffic_d_tected: Boolean;
end

Frame Eastwest_lane:

Direction: EASTWEST

end

Frame Northsouth_lane:

Direction: NORTHSOUTH

end

16

WHEN

tl'U¢

DO INTERR_LE

[Flow_direction_witchtime,Wait_time,Traffic_waiting :=

initial.flow_direction,120,0 ,FALSE]

How_direction := initial_flowdirection

Switch_time := 120

Wait..time := 0

Traffic_waiting := FALSE

State := NULL

[For every second in time:

No traffic waiting to cross -->

change traffic flow 120 seconds after last change

/ no traffic in current direction offlow-->

change traffic flow 15 seconds after

detecting traffic waiting to cross

I change traffcflow 15 seconds after

detecting traffic in current direction of flow

but not more than 60 seconds after

detecting traffic waiting to cross]
FOR time := 0 to forever

[Read traffic direction sensors]

Read(Sensor_sueam,

Eastwest_lane.waffic_detected,

Northsouth_lane.trailic_detected)

[Traffc_waiting --> Wait_time := Wait.time + 1]

state := UPDATE_WAlT_TIME

[time = switch_time / wait_time = 60 -->

change traffic flow;

switch_time,wait time _traffc_.waiting := time+ 120,0,FALSE

/ ((sensors detect traffc waiting & not trafficwaiting) /

(traffic..waiting &

sensors detect traffic in current direction of flow)) -->

switch_time,traffic_waiting = time +15 ,TR UE]

state := SWITCH_'IRAFFIC

END WHILE

END

17

[Wait rime update required & Trafficwaiting -->

Wait time := Wait time + 1]

vpsat w t T me7WHENEVER

stateffiUPDATE_WAITTIME and

traffic_waiting

DO

wait_time := wait_time + 1

END

[traffic flow change required &

(time = switch_time / wait_time = 60) -->

change traffic flow;

switch._time,wait_time,traffic waiting := time +120 ,0 _FALSE ;

indicate that traffic flow change is not required]

Switda_tramc: WHENEVER

state = swrrCH_TRAFFIC and

(time = swish_time or wait_time = 60)

DO

[Switch.time,Wait_.time,Flow_direction,Traffic_waiting :=

time + ! 20,0 ,not Flow_direction ,FALSE]

Switch_time :ffitime+120

Wait_time := 0

Flow__on := not Flow_dixc_tion

Traffic _ := FALSE

:-NULL

END

18

[traffic flow change required &

not (time = switch time [wait_torte = 60) &

((sensors detect traffic waiting & not traffic_waiting) [

(tr affc_wain'n g &

sensors detect traffic in current direction of flow))-->

switc h._time,traffc_waitin g = time+IS,TRUE;

indicate that traffic flow change is not required]

Crossing_traffic: WIIENEVER

state = SWITCH_TRAFFIC and

not (time = switch_time or wait_time = 60) and

((flow sensor.tra_e._detccted = TRUE and

flow_sensor.direction _ Flow direction and

traffic_waiting = FALSE) or

(traffie_.waiting = TRUE and

flow_sensor.traf:fie_deteeted = TRUE and

flow_sensor.direction = Flow_direction))

DO

[Traffic..waiting_witch..fime := TRUE_irne+15]

Traffic_waiting := TRUE

Switch_time := tim¢+15
state := NULL

END

19

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

